Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-20T09:20:01.108Z Has data issue: false hasContentIssue false

Differential item functioning in the cognitive screener used in the Longitudinal Aging Study in India

Published online by Cambridge University Press:  20 February 2019

Ashish Goel*
Affiliation:
Department of Medicine, University College of Medical Sciences, University of Delhi, Delhi, India
Alden Gross
Affiliation:
Department of Epidemiology and Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
*
Correspondence should be addressed to: Ashish Goel, Department of Medicine, University College of Medical Sciences, University of Delhi, Delhi 110095, India. Phone: +91 9818688403. Email: [email protected].

Abstract

Introduction:

The Longitudinal Aging Study in India (LASI) was initiated to capture data to be comparable to the Health and Retirement Survey (HRS) and hence used study instruments from the HRS. However, a rigorous psychometric evaluation before adaptation of cognitive tests may have indicated bias due to diversities across Indian states such as education, ethnicity, and urbanicity. In the present analysis, we evaluated if items show differential item functioning (DIF) by literacy, urbanicity, and education status.

Methods:

We calculated proportions for each item and weighted descriptive statistics of demographic characteristics in LASI. Next, we evaluated item-level measurement differences by testing for DIF using the alignment approach implemented using Mplus software.

Observation:

We found that cognitive items in the LASI interview demonstrate bias by education and literacy, but not urbanicity. Items relating to animal (word) fluency show DIF. The model rates correct identification of the prime minister as the most difficult binary response item whereas the day of the week and numeracy items are rated comparatively easier.

Conclusions:

Our study would facilitate comparison across education, literacy and urbancity to support analyses of differences in cognitive status. This would help future instrument development efforts by recognizing potentially problematic items in certain subgroups.

Type
Original Research Article
Copyright
© International Psychogeriatric Association 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Longitudinal Aging Study in India (LASI). Boston: Harvard TH Chan School of Public Health. Population Composition. Census of India. (2011). Census of India 2011: Provisional Population Totals; Urban Agglomerations and Cities, New Delhi.Google Scholar
Anthony, J. C., LeResche, L., Niaz, U., von Korff, M. R. and Folstein, M. F. (1982). Limits of the ‘mini-mental state’ as a screening test for dementia and delirium among hospital patients. Psychological Medicine, 12, 397408. doi: 10.1017/S0033291700046730.CrossRefGoogle ScholarPubMed
Arokiasamy, P., Bloom, D. E., Lee, J., Feeney, K. and Ozolins, M. (2012). Longitudinal agins study in India: vision, design, implementation and preliminary findings. In: Smith, J. P. and Majmundar, M. (eds.), Aging in Asia: Findings from New and Emerging Data Initiatives. Washington, DC: National Academies Press.Google Scholar
Ashford, J. W., Kolm, P., Colliver, J. A., Bekian, C. and Hsu, L. N. (1989). Alzheimer patient evaluation and the mini-mental state: item characteristic curve analysis. Journal of Gerontology, 44, P139P146. doi: 10.1093/geronj/44.5.P139.CrossRefGoogle ScholarPubMed
Asparouhov, T. and Muthen, B. (2014). Multiple-group factor analysis alignment. Structural Equation Modeling: A Multidisciplinary Journal, 21, 495508. doi: 10.1080/10705511.2014.919210.CrossRefGoogle Scholar
Chan, K. S., Gross, A. L., Pezzin, L. E., Brandt, J. and Kasper, J. D. (2015). Harmonizing measures of cognitive performance across international surveys of aging using item response theory. Journal of Aging and Health, 27, 13921414. doi: 10.1177/0898264315583054.CrossRefGoogle ScholarPubMed
Choudhary, R., Goel, A., Pruthi, S., Kalra, S., Agarwal, S. and Kalra, O. P. (2015). Profile of Patients Hospitalized through the emergency room to the medicine ward and their short-term outcome at a tertiary care hospital in Delhi. Prehospital and Disaster Medicine, 30, 593598. doi: 10.1017/S1049023X15005312.CrossRefGoogle Scholar
Crane, P. K., van Belle, G. and Larson, E. B. (2004). Test bias in a cognitive test: differential item functioning in the CASI. Statistics in Medicine, 23, 241256. doi: 10.1002/sim.1713.CrossRefGoogle Scholar
Crum, R. M., Anthony, J. C., Bassett, S. S. and Folstein, M. F. (1993). Population-based norms for the Mini-Mental State Examination by age and educational level. JAMA, 269, 23862391.CrossRefGoogle ScholarPubMed
Duncan-Jones, P., Grayson, D. A. and Moran, P. A. (1986). The utility of latent trait models in psychiatric epidemiology. Psychological Medicine, 16, 391405. doi: 10.1017/S0033291700009223.CrossRefGoogle ScholarPubMed
Espino, D. V., Lichtenstein, M. J., Palmer, R. F. and Hazuda, H. P. (2001). Ethnic differences in mini-mental state examination (MMSE) scores: where you live makes a difference. Journal of the American Geriatrics Society, 49, 538548. doi: 10.1046/j.1532-5415.2001.49111.x.CrossRefGoogle ScholarPubMed
Espino, D. V., Lichtenstein, M. J., Palmer, R. F. and Hazuda, H. P. (2004). Evaluation of the mini-mental state examination’s internal consistency in a community-based sample of Mexican-American and European-American elders: results from the San Antonio longitudinal study of aging. Journal of the American Geriatrics Society, 52, 822827. doi: 10.1111/j.1532-5415.2004.52226.x.CrossRefGoogle Scholar
Fillenbaum, G., Heyman, A., Williams, K., Prosnitz, B. and Burchett, B. (1990). Sensitivity and specificity of standardized screens of cognitive impairment and dementia among elderly black and white community residents. Journal of Clinical Epidemiology, 43, 651660. doi: 10.1016/0895-4356(90)90035-N.CrossRefGoogle ScholarPubMed
Ganguli, M. et al. (1996). Cognitive test performance in a community-based nondemented elderly sample in rural India: the Indo-U.S. Cross-National dementia epidemiology study. International Psychogeriatrics, 8, 507524. doi: 10.1017/S1041610296002852.CrossRefGoogle Scholar
Gibbons, R. D., Clark, D. C., VonAmmon Cavanaugh, S. and Davis, J. M. (1985). Application of modern psychometric theory in psychiatric research. Journal of Psychiatric Research, 19, 4355. doi: 10.1016/0022-3956(85)90067-6.CrossRefGoogle ScholarPubMed
Juster, F. T. and Suzman, R. (1995). An overview of the health and retirement survey. The Journal of Human Resources, 30, S7S56. doi: 10.2307/146277.CrossRefGoogle Scholar
Langa, K. M. et al. (2008). Trends in the prevalence and mortality of cognitive impairment in the United States: is there evidence of a compression of cognitive morbidity? Alzheimer's & Dementia, 4, 134144. doi: 10.1016/j.jalz.2008.01.001.CrossRefGoogle ScholarPubMed
Lee, J., Shih, R., Feeney, K. and Langa, K. M. (2011). Cognitive health of older Indians: individual and geographic determinants of female disadvantage. https://www.rand.org/content/dam/rand/pubs/working_papers/2011/RAND_WR889.pdf.Google Scholar
Lee, J. and Smith, J. P. (2014). Regional disparities in adult height, educational attainment and gender difference in late- life cognition: findings from the longitudinal aging study in India (LASI). The Journal of the Economics of Ageing, 4, 2634. doi: 10.1016/j.jeoa.2014.02.002.CrossRefGoogle Scholar
Mathuranath, P. S., Cherian, J. P., Mathew, R., George, A., Alexander, A. and Sarma, S. P. (2007). Mini mental state examination and the Addenbrooke’s cognitive examination: effect of education and norms for a multicultural population. Neurology India, 55, 106110. doi: 10.4103/0028-3886.32779.CrossRefGoogle ScholarPubMed
Mathuranath, P. S. et al. (2010). Dementia in Kerala, South India: prevalence and influence of age, education, and gender. International Journal of Geriatric Psychiatry, 25, 290297. doi: 10.1002/gps.2338.CrossRefGoogle ScholarPubMed
Muthen, B. and Asparouhov, T. (2014). IRT studies of many groups: the alignment method. Frontiers in Psychology, 5, 978.Google ScholarPubMed
Muthén, L. K. and Muthén, B. O. (1998–2011). Mplus User’s Guide. Los Angeles: Muthen & Muthen.Google Scholar
Pandav, R., Fillenbaum, G., Ratcliff, G., Dodge, H. and Ganguli, M. (2002). Sensitivity and specificity of cognitive and functional screening instruments for dementia: the Indo-U.S. dementia epidemiology study. Journal of the American Geriatrics Society, 50, 554561. doi: 10.1046/j.1532-5415.2002.50126.x.CrossRefGoogle ScholarPubMed
Raina, S. K., Raina, S., Chander, V., Grover, A., Singh, S. and Bhardwaj, A. (2014). Is dementia differentially distributed? A study on the prevalence of dementia in migrant, urban, rural, and tribal elderly population of Himalayan region in northern India. North American Journal of Medical Sciences, 6, 172177. doi: 10.4103/1947-2714.131243.CrossRefGoogle Scholar
Ramirez, M., Teresi, J. A., Holmes, D., Gurland, B. and Lantigua, R. (2006).Differential item functioning (DIF) and the mini-mental state examination (MMSE). Overview, sample, and issues of translation. Medical Care, 44, S95S106. doi: 10.1097/01.mlr.0000245181.96133.db.CrossRefGoogle Scholar
Sadhu, A. et al. (2014). Management of cognitive determinants in senile dementia of Alzheimer’s type: therapeutic potential of a novel polyherbal drug product. Clinical Drug Investigation, 34, 857869. doi: 10.1007/s40261-014-0235-9.CrossRefGoogle ScholarPubMed
Sanyal, J., Das, S., Ghosh, E., Banerjee, T. K., Bhaskar, L. V. and Rao, V. R. (2015). Burden among Parkinson’s disease care givers for a community based study from India. Journal of the Neurological Sciences, 358, 276281. doi: 10.1016/j.jns.2015.09.009.CrossRefGoogle ScholarPubMed
Sosa, A. L. et al. (2009). Population normative data for the 10/66 dementia research group cognitive test battery from Latin America, India and China: a cross-sectional survey. BMC Neurology, 9, 48. doi: 10.1186/1471-2377-9-48.CrossRefGoogle ScholarPubMed
Tennant, A., Kucukdeveci, A. A., Kutlay, S. and Elhan, A. H. (2006). Assessing normative cut points through differential item functioning analysis: an example from the adaptation of the Middlesex Elderly Assessment of Mental State (MEAMS) for use as a cognitive screening test in Turkey. Health and Quality of Life Outcomes, 4, 18. doi: 10.1186/1477-7525-4-18.CrossRefGoogle ScholarPubMed
Teresi, J. A., Golden, R. R., Cross, P., Gurland, B., Kleinman, M. and Wilder, D. (1995). Item bias in cognitive screening measures: comparisons of elderly white, Afro-American, Hispanic, and high and low education subgroups. Journal of Clinical Epidemiology, 48, 473483. doi: 10.1016/0895-4356(94)00159-N.CrossRefGoogle ScholarPubMed
Teresi, J. A., Kleinman, M. and Ocepek-Welikson, K. (2000). Modern psychometric methods for detection of differential item functioning: application to cognitive assessment measures. Statistics in Medicine, 19, 16511683. doi: 10.1002/(SICI)1097-0258(20000615/30)19:11/12<1651::AID-SIM453>3.0.CO;2-H.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Tiwari, S. C., Tripathi, R. K. and Kumar, A. (2009). Applicability of the Mini-Mental State Examination (MMSE) and the Hindi Mental State Examination (HMSE) to the urban elderly in India: a pilot study. International Psychogeriatrics, 21, 123128. doi: 10.1017/S1041610208007916.CrossRefGoogle ScholarPubMed