Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-14T11:15:27.792Z Has data issue: false hasContentIssue false

Variation in Lipophorin Titres During Development in Solitarious and Gregarious Schistocerca gregaria (Forskål) (Orthoptera: Acrididae)

Published online by Cambridge University Press:  19 September 2011

D. O. Ogoyi
Affiliation:
Department of Biochemistry, University of Nairobi, P. O. Box 30197, Nairobi, Kenya
E. O. Osir
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P. O. Box 30772, Nairobi, Kenya
Get access

Abstract

The levels of lipophorin, the principal insect haemolymph lipoprotein, were estimated during the development of solitary and gregarious phases of Schistocerca gregaria using single radial immunodiffusion. In the gregarious phase, lipophorin titres ranged from 6.69 ± 0.57 mg/ml in the 3rd nymphal instar to 14.42 ± 2.04 mg/ml in mature adults. The titres in the solitary phase were 3.33 ± 0.59 mg/ml in the 3rd nymphal instar and 8.44 ± 0.67 mg/ml in mature adults. Peak lipophorin titres occurred in mature adults (14.42 ± 2.04 mg/ml) and 5th nymphal instar (8.75 ± 0.25 mg/ml) for gregarious and solitary locusts, respectively. Gregarious locusts had significantly (P< 0.05) higher lipophorin titres than their solitary counterparts during the 3rd and 4th nymphal instars as well as in the adult stage (P< 0.01). Estimation of the haemolymph protein levels over the same period showed a general increase from the 3rd nymphal instar to mature adult stage in both phases. It is proposed that the higher lipophorin titre in gregarious locusts is a physiological adaptation that ensures high lipid reserves that are necessary to cope with the high metabolic requirements of this phase.

Résumé

Les taux de lipophorine, la principale lipoprotéine de l'hémolymphe des insectes, ont été estimés pendant le développement des phases solitaires et grégaires de Schistocerca gregaria à l'aide de l'immunodiffusion radiale simple. Chez la phase grégaire, les teneurs en lipophorine sont comprises entre 6.69 ±0.57 mg/ml pour le 3éme stade juvénile et 14.42 ± 2.04 mg/ml pour les adultes matures. Chez la phase solitaire, les teneurs sont de 3.33 ± 0.59 mg/ml pour le 3ème stade juvénile et de 8.44 ± 0.67mg/ml pour les adultes matures. Les teneurs les plus élevées en lipophorine sont rencontrées sur les adultes matures (14.42 ± 2.04 mg/ml) et le 5éme stade juvénile (8.75 ± 0.25 mg/ml) pour les criquets grégaires et solitaires, respectivement.

Les criquets grégaires ont des teneurs significativement plus élevées (P < 0.05) que leurs homologues solitaires pendant les stades juvéniles 3 et 4, de même que chez le stade adulte (P < 0.01). Pendant la même période, pour les deux phases, l'estimation des teneurs en protéines de l'hémolymphe montre un accroissement général lorsque l'on passe du 3éme stade juvénile au stade adulte. Les plus fortes teneurs en lipophorine chez les criquets grégaires seraient une adaptation physiologique leur permettant de disposer d'importantes réserves lipidiques nécessaires à leurs fortes exigences métaboliques.

Type
Research Articles
Copyright
Copyright © ICIPE 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ayali, A. and Pener, M. P. (1992) Density-dependent phase polymorphism affects responses to adipokinetic hormone in Locusta. Comp. Biochem. Physiol. 101A, 549552.CrossRefGoogle Scholar
Beenakkers, A. M. Th., Van der Horst, D. J. and Marrewijk, W. J. A. (1985) Insect lipids and lipoproteins and their role in physiological processes. Prog. Lipid Res. 24, 1967.CrossRefGoogle ScholarPubMed
Chino, H., Hirayama, Y., Kiyomoto, Y., Downer, R. G. H. and Takahashi, K. (1987) Spontaneous aggregation of locust lipophorin during haemolymph collection. Insect Biochem. 17, 8997.CrossRefGoogle Scholar
Chino, H., Lum, P. Y., Nagao, E. and Hiraoka, T. (1992) The molecular and metabolic essentials for long distance flights, J. Comp. Physiol. 162, 101106.CrossRefGoogle Scholar
Gade, G. and Beenakkers, A. M. Th. (1977) Adipokinetic hormone induced lipid mobilization and cyclic AMP accumulation in the fat body of Locusta migratoria during development. Gen. Comp. Endocr. 32, 481487.CrossRefGoogle ScholarPubMed
Gonzalez, M. S., Soulages, J. L. and Brenner, R. R. (1991) Changes in haemolymph lipophorin and very high density lipoprotein levels during the fifth nymphal and adult stages of Triatoma infestans. Insect Biochem. 21, 679687.CrossRefGoogle Scholar
Hunter, D. M., McCulloch, L. and Wright, D. E. (1981) Lipid accumulation and migratory flight in the Australian plague locust, Chortoicetes terminifera (Walker) (Orthoptera: Acrididae). Bull. Ent. Res. 71, 543546.CrossRefGoogle Scholar
Laemmli, U. K. (1970) Cleavage of structural protein during the assembly of the heads of bacteriophage T4. Nature 227, 680685.CrossRefGoogle ScholarPubMed
Mancini, G., Carbonara, A. O. and Heremans, J. F. (1965) Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochem. 2, 235254.CrossRefGoogle ScholarPubMed
Mwangi, R. W. and Goldsworthy, G. J. (1977) Diacylglycerol transporting lipoproteins and flight in Locusta. J. Insect Physiol. 27, 4750.CrossRefGoogle Scholar
Ogoyi, D. O., Osir, E. O. and Olembo, N. K. (1995) Lipophorin and apolipophorin-III in solitary and gregarious phase of Schistocerca gregaria. Comp. Biochem. Physiol. 112B, 441449.CrossRefGoogle Scholar
Ogoyi, D. O., Osir, E. O. and Olembo, N. K. (1996) The effect of phase status on responses to adipokinetic hormone in Schistocerca gregaria. Arch. Insect Biochem. Physiol. 32, 172185.3.0.CO;2-#>CrossRefGoogle Scholar
Osir, E. O., Labongo, L. V. and Unnithan, G. C. (1989) A high molecular weight diapause- associated protein from the stem borer, Busseola fusca: Purification and properties. Arch. Insect Biochem. Physiol. 11, 173187.CrossRefGoogle Scholar
Popham, H. J. R. and Chippendale, G. M. (1993) Measurement of lipophorin titer in the larval hemolymph of the Southwestern corn borer, Diatraea grandiosella, by ELISA. Insect Biochem. Mol. Biol. 23, 721727.CrossRefGoogle Scholar
Prasad, S. V., Ryan, R. O., Law, J. H. and Wells, M. A. (1986a) Changes in lipoprotein composition during larval-pupal metamorphosis of an insect, Manduca sexta. J. Biol. Chem. 261, 558562.CrossRefGoogle ScholarPubMed
Prasad, S. V., Fernando-Warnakulasuriya, G. J. P. and Wells, M. A. (1986b) Lipoprotein biosynthesis in the larvae of the tobacco hornworm. Manduca sexta. J. Biol. Chem. 261, 1717417176.CrossRefGoogle ScholarPubMed
Ryan, R. O. and Law, J. H. (1984) Metamorphosis of a protein. Bio Essays 1, 250252.Google Scholar
Schneider, M. and Dorn, A. (1994) Lipid storage and mobilization by flight in relation to phase and age of Schistocerca gregaria females. Insect Biochem. Mol. Biol. 24, 883889.CrossRefGoogle Scholar
Shapiro, J. P., Keim, P. S. and Law, J. H. (1984) Structural studies on lipophorin, an insect lipoprotein. J. Biol. Chem. 259, 36803685.CrossRefGoogle ScholarPubMed
Shelby, K. S. and Chippendale, G. M. (1990) In vitro synthesis and secretion of lipophorin by the fat body in non-diapausing and pre-diapausing larvae of the south western corn borer, Diatrea grandiosella. Insect Biochem. 20, 517522.CrossRefGoogle Scholar
Telfer, W. H., Pan, M. and Law, J. H. (1991) Lipophorin in the developing adults of Hyalophora cecropia: Support of yolk formation and preparation for flight. Insect Biochem. 21, 656663.CrossRefGoogle Scholar
Trost, J. T. and Goodman, W. G. (1986) Hemolymph titers of the biliprotein, insecticyanin, during development of Manduca sexta. Insect Biochem. 16, 353358.CrossRefGoogle Scholar
Van der Horst, D. J. (1990) Lipid transport function of lipoproteins in flying insects. Biochimica Biophysica Acta 107, 197211.Google Scholar
Van der Horst, D. J., Van Heusden, M. C., Schulz, T. K. F. and Beenakkers, A. M. Th. (1987a) Adipokinetic hormone induced lipophorin transformations during locust flight. UCLA Symp. Molec. Cell Biol. (NS). 49, 247257.Google Scholar
Van der Horst, D. J., Beenakkers, A. M. Th., Van Doom, J. H., Gerritse, K. and Schulz, T. K. F. (1987b) Adipokinetic hormone-induced lipid mobilization and lipophorin interconversions in fifth larval instar locusts. Insect Biochem. 17, 799808.CrossRefGoogle Scholar
Van Heusden, M. L., Erickson, B. A. and Pennington, J. E. (1997) Lipophorin levels in yellow fever mosquitoes Aedes aegypti, and the effect of feeding. Arch. Insect Biochem. Physiol. 9, 255265.Google Scholar
Ziegler, R., Ryan, R. O., Arbas, E. A. and Law, J. H. (1988) Adipokinetic response in a flightless grasshopper (Barytettix psolus): Functional components and defective response. Arch. Insect Biochem. Physiol. 9, 255265.CrossRefGoogle Scholar
Zollner, N. and Kirsch, K. (1962) Ueber die quantitative bestimmung von lipoiden (mikromethod) mittels der vielen naturlichen lipoiden (allen bekannten plasmalipoiden) gemeisamen sulphophospho-vanillin reaktion. Z. ges. exp. med. 135, 545561.CrossRefGoogle Scholar