Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-15T07:27:54.741Z Has data issue: false hasContentIssue false

Toxicity of 1,8-cineole towards three species of stored product coleopterans

Published online by Cambridge University Press:  19 September 2011

Kishan Kumar Aggarwal
Affiliation:
Chemical Engineering Division, Genetic Resources and Biotechnology Division, Central Institute of Medicinal and Aromatic Plants, P. O. CIMAP, Lucknow PIN 226015, India
Arun Kumar Tripathi*
Affiliation:
Bioprospection Group Genetic Resources and Biotechnology Division, Central Institute of Medicinal and Aromatic Plants, P. O. CIMAP, Lucknow PIN 226015, India
Veena Prajapati
Affiliation:
Bioprospection Group Genetic Resources and Biotechnology Division, Central Institute of Medicinal and Aromatic Plants, P. O. CIMAP, Lucknow PIN 226015, India
Sushil Kumar
Affiliation:
Bioprospection Group Genetic Resources and Biotechnology Division, Central Institute of Medicinal and Aromatic Plants, P. O. CIMAP, Lucknow PIN 226015, India
*
Corresponding author: AKT. E-mail: [email protected]
Get access

Abstract

1,8-cineole, one of the components of the essential oil of Artemisia annwa, was evaluated for repellency and toxicity against three stored product coleopterans—Callosobruchiis maculatus F. (Coleoptera: Bruchidae), Rhyzopertha dominica F. (Coleoptera: Bostrychidae) and Sitopliilus oryzae L. (Coleoptera: Curculionidae). It was found to be moderately repellent to all three species, with a mean repellency in the range of 65–74% at the highest dose tested (4.0 μl/ml) within 1h. A contact toxicity assay revealed that direct topical application was more effective than using impregnated filter paper. The compound was more effective as a fumigant and gave 93–100% mortality against all the three pest species at the dose of 1.0 μl/l air under empty jar conditions as compared to treatment of jars filled with grain (11–26% mortality). The lethal dose and lethal concentration required to kill 50% of the beetles (LD50 and LC50) respectively varied.with the toxicity assay method. LD50 values of 0.03, 0.04 and 0.04 μl/insect against C. maculatus, R. dominica and S. oryzae respectively were found in the topical application assay while the LC50 in the fumigant assay was 0.28, 0.33 and 0.46 μl/l against C. maculatus, R. dominica and S. oryzae respectively.

Résumé: —L'un des composés de l'huile essentielle d'Artemisia annua, le 1,8-cineole, a été évalué pour sa répulsion et sa toxicité vis à vis de trois coléoptères des denrées stockées, Callosobrnchus maculatus F. (Coleoptera: Bruchidae), Rhyzoperta dominica F. (Coleoptera: Bostrychidae) et Sitopliilus orizae L. (Coleoptera: Curculionidae). Il s'est avéré être modérément répulsif pour les 3 espèces, avec une répulsion moyenne de 65–74% à la plus forte dose testée (4.0 ml/ml) pendant 1 heure. Un essai de toxicité de contact indique qu'une application locale directe est plus efficace que l'utilisation d'un papier filtre imprégné. Le composé est plus efficace en fumigation et provoque 93–100% de mortalité chez les trois espèces de ravageurs à la dose de 1.0 ml/l d'air dans un pot vide par rapport à un pot rempli de grains (11–26% de mortalité). La dose létale et la concentration létale requises pour tuer 50% des scarabées (LD50 et LC50 respectivement) varient avec le type d'essai de toxicité. Des valeurs de LD50 de 0.03, 0.04 et 0.04 ml/insecte pour C. maculatus, R. dominica et S. oryzae respectivement ont été trouvées dans l'essai avec une application locale alors que la LC50 dans l'essai de fumigation était respectivement de 0.28, 0.33 et 0.46ml/l pour C. maculatus, R. dominica et S. oryzae.

Type
Research Articles
Copyright
Copyright © ICIPE 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abott, W. S. (1925) A method for computing the effectiveness of an insecticide. J. Econ. Ent. 18, 265267.CrossRefGoogle Scholar
Finney, D. J. (1971) Probit Analysis. Cambridge University Press, London. 333 pp.Google Scholar
Ganapathi, K. (1937) Biogenesis of terpenoids. Curr. Sci. 6, 1921.Google Scholar
Gbolade, A. A. and Adebayo, T. A. (1993) Fumigant effects of some volatile oils on fecundity and adult emergence of Callosobrucints maculatus F. Insect Sci. Applic. 14, 631636.Google Scholar
Jacobion, M. and Halber, L. (1947), p. 83. In The Chemistry of Organic Medicinal Products (Edited by G. L., Jenkins et al.). Chapman and Hall Ltd., New York.Google Scholar
Xu, Hang-Hong, S. F., Chiù, Jiang, F. Y. and Huang, G. W. (1993) Experiments on the use of essential oils against stored prod uct insects in a storehouse. J. South China Agric. Univ. 14, 4247.Google Scholar
McDonald, L. L., Guy, R. H. and Speirs, R. D. (1970) Preliminary evaluation of new candidate materials as toxicants, repellents and attractants against stored product insects —1. Marketing Research Report No. 882. Agricultural Research Service, US Department of Agriculture, Washington D.C. 8 pp.Google Scholar
Metcalf, R. L. (1980) Changing role of insecticides in crop protection. Annu. Rev. Entomol. 25, 219256.CrossRefGoogle Scholar
Obeng-Ofori, D., Adler, C. and Reichmuth, C.C. (1997) Toxicity and repellency of 1,8-cineole, eugenol and camphor against stored product insects. Mitteil. Deuts. Gesells. Allg. Ange. Entomol. 11, 259264.Google Scholar
Perkin, J. H. (1982) Insects, Experts sand the Insecticide Crisis. Plenum Press, New York.CrossRefGoogle Scholar
Prates, H. T., Santos, J. P., Waquil, J. M., Fabris, J. D., Olivera, A. B. and Foster, J.E. (1998) Insecticidal activities of monoterpenes against Rhyzopertha dominica (F) and T. castaneum (Herbst), J. Stored Prod. Res. 34, 243249.CrossRefGoogle Scholar
Rao, R. J., Kumar, K. M., Singh, S. and Subrahmanyam, B. (1999) Effect of Artemisia annua oil on development and reproduction of Dysdercus koemingii (F.) (Hemiptera: Pyrrhocoridae). J. Appl. Entomol. 123, 315318.Google Scholar
SAS Institute (1988) SAS/STAT User's Guide, Statistics, version 6.03. SAS Institute, Cary, NC.Google Scholar
Shaaya, E., Ravid, V., Paster, N., Juven, B., Zisman, U. and Pissarew, V. (1991) Fumigant toxicity of essential oils against four major stored product insects. J. Chem. Ecol. 17, 499504.Google Scholar
Silver, P. (1994) Alternatives to methyl bromide sought. Pestio. News 24, 1227.Google Scholar
SPSS (1999) SPSS for Windows, version 9.01. SPSS, Chicago, IL.Google Scholar
Talukder, F. A. and Howse, P. E. (1994) Repellent, toxic and food protectant effects of pithraj, Aphanamixis polystachya extract against pulse beetle, Callosobntchus chinensis in storage. J. Chem. Ecol. 4, 899908.CrossRefGoogle Scholar
Tripathi, A. K., Prajapati, V., Gupta, R. and Kumar, S. (1999) Herbal materials for the insect-pest management in stored grains under tropical conditions. J. Med. Arom. Plant Sci. 21, 408430.Google Scholar
Tripathi, A. K., Prajapati, V., Aggarwal, K. K., Khanuja, S. P. S. and Kumar, S. (2000a) Repellency and toxicity of oil from Artemisia annua to certain stored product beetles. J. Econ. Ent. 93, 4347.CrossRefGoogle ScholarPubMed
Tripathi, A. K., Prajapati, V., Aggarwal, K. K. and Kumar, S. (2000b) Effect of volatile oil constituents of Mcntha species against the stored grain pests, Callosobruchus maculatxis and Tribolium castaneum. J. Mcd. Arom. Plant Sci. 22/1B, 549556.Google Scholar
Wilkins, R. M. and Rajendran, C. (1994) Interaction of chlordimiform with malathion in resistant and susceptible Tribolium castaneum, pp. 443448. In Proceedings of the Brighton Crop Protection Conference, Pests and Disease, Vol. 1.Google Scholar
Zettler, J. L. and Cuperus, G. W. (1990) Pesticide resistance in Tribolium castaneum (Coleoptera: Tenebrionidae) and Rhyzopertha dominica (Coleoptera: Bostrichidae) in wheat. J. Econ. Ent. 83, 16771681.CrossRefGoogle Scholar
Zettler, J. L. and Keever, D. W. (1994) Phosphine resistance in cigarette beetle (Coleoptera: Anobidae) associated with tobacco storage in the south eastern United States. J. Econ. Ent. 87, 546550.CrossRefGoogle Scholar