Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T09:21:59.407Z Has data issue: false hasContentIssue false

Symposium: Endocytosis by and of protozoa

Published online by Cambridge University Press:  19 September 2011

Jytte R. Nilsson
Affiliation:
Institute of Cell Biology and Anatomy, The Zoological Institutes, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark
Earl Weidner
Affiliation:
Department of Zoology and Physiology, Louisiana State University, Baton Rouge, LA 70803-1725, U.S.A.
Get access

Extract

Endocytosis is the process by which a cell ingests material (solute, paniculate, living cells) and encloses it in a membrane-limited vacuole, the endosome. Protozoa may ingest or they may become ingested. In the latter case they may serve as food for the ingesting cell or they may, as parasites, survive and multiply at the expense of the ingesting cell. The present symposium was concerned with two topics: (1) endocytosis by free living protozoa, and (2) endocytosis of parasitic protozoa. In both cases the initial result of endocytosis is the formation of an endosome, whereas the further fate of the ingested contents differs (Fig. 1); in the first instance the contents are digested by the action of hydrolytic (lysosomal) enzymes and in the second instance the ingested parasite avoids digestion and becomes adapted to parasitism.

Type
Research Article
Copyright
Copyright © ICIPE 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aikawa, M. (1972) High-resolution autoradiography of malarial parasites treated with 3H-chloroquine. Am. J. Path. 67, 277284.Google Scholar
Aikawa, M., Miller, L. H., Johnson, J. and Rabbege, J. (1978) Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. J. Cell Biol. 11, 7282.CrossRefGoogle Scholar
Aikawa, M., Yoshida, N., Nussenzweig, R. S. and Nussen-zweig, V. (1981) The protective antigen of malarial sporo-zoites (Plasmodium berghei) is a differentiation antigen. J. Immun. 126, 24942495.CrossRefGoogle ScholarPubMed
Allen, R. D. (1984) Paramecium phagosome membrane: From oral region to cytoproct and back again. J. Proto-zool. 31, 16.Google Scholar
Allen, R. D. and Fok, A. K. (1980) Membrane recycling and endocytosis in Paramecium confirmed by horseradish peroxidase pulse-chase studies. J. Cell Sci. 45, 131145.CrossRefGoogle ScholarPubMed
Allen, R. D. and Fok, A. K. (1983) Nonlysosomal vesicles (acidosomes) are involved in phagosome acidification in Paramecium. J. Cell Biol. 97, 566570.CrossRefGoogle ScholarPubMed
Bannister, L. H., Butcher, G. A. and Mitchell, G. H. (1977) Recent advances in understanding the invasion of eryth-rocytes by merozoites of Plasmodium knowlesi. Bull. Wld Hlth Org. 55, 163169.Google Scholar
Chapman-Andresen, C. (1972) Membrane activity in freshwater amobae. J. Protozool. 19, 225231.CrossRefGoogle Scholar
Chang, K.-P. and Fong, D. (1983) Cell biology of host-parasite membrane interactions in leishmaniasis. Ciba Foundatn Symp. 99, 113137.Google ScholarPubMed
Fok, A. K., Lee, Y. and Allen, R. D. (1982) The correlation of digestive vacuole pH and size with the digestive cycle in Paramecium caudatum. J. Protozool. 29, 409414.CrossRefGoogle Scholar
Gebauer, H.-J. (1977) Ingestion and digestion in the ciliate Tetrahymena pyriformis. Study of a temporal and structural analysis. Protistologica 13, 535548.Google Scholar
Hausmann, K. and Peck, R. K. (1979) The mode of function of the cytopharyngeal basket of the ciliate Pseudo-microthorax dubius. Differentiation 14, 147158.Google Scholar
Hirsch, J. G. (1972) The phagocytic defence system. 22nd Symposium of the Society of General Microbiology, London 1972, pp. 5974.Google Scholar
Homewood, C. A., Warhurst, D. C., Peters, W. and Baggaley, V. C. (1972) Lysosomes, pH and the anti-malarial action of chloroquine. Nature 235, 5052.CrossRefGoogle ScholarPubMed
Jensen, M. S. and Bainton, D. F. (1973) Temporal changes in pH within the phagocytic vacuole of the poly-morphonuclear neutrophilic leucocyte. J. Cell Biol. 56, 379388.CrossRefGoogle Scholar
Jones, T. C. and Hirsch, J. G. (1972) The interaction between Toxoplasma gondii and mammalian cells. II. The absence of lysosomal fusion with phagocytic vacuoles containing living parasites. J. exp. Med. 136, 11731194.CrossRefGoogle ScholarPubMed
McNeil, P. L., Tanasugarn, L., Meigs, J. B. and Taylor, D. L. (1983) Acidification of phagosomes is initiated before lysosomal enzyme activity is detected. J. Cell Biol. 97, 692702.CrossRefGoogle ScholarPubMed
Nilsson, J. R. (1977) On food vacuoles in Tetrahymena pyriformis GL. J. Protozool. 24, 502507.CrossRefGoogle ScholarPubMed
Nilsson, J. R. (1984) On starvation-induced autophagy in Tetrahymena. Carlsberg Res. Commun. 49, 323340.CrossRefGoogle Scholar
Nilsson, J. R. and van Deurs, B. (1983) Coated pits and pinocytosis in Tetrahymena. J. Cell Sci. 63, 209222.CrossRefGoogle ScholarPubMed
Nogueira, N. (1983) Host and parasite factors affecting the invasion of mononuclear phagocytes by Trypanosoma cruzi. Ciba Foundatn Symp. 99, 5273.Google ScholarPubMed
Nozawa, Y. and Nagao, S. (1986) Functional aspects of calmodulin in protozoa. Insect Sci. Applic. 7, 267277.Google Scholar
Ohkuma, S. and Poole, B. (1978) Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc. natn. Acad. Sci. U.S.A. 75, 33273331.Google Scholar
Ohkuma, S. and Poole, B. (1981) Cytoplasmic vacuolation of mouse peritoneal macrophages and the uptake into lysosomes of weakly basic substances. J. Cell Biol. 90, 656664.CrossRefGoogle ScholarPubMed
Ohkuma, S., Moriyama, Y. and Takano, T. (1982) Identification and characterization of a proton pump on lysosomes by fluorescein isothiocyanate-dextran fluorescence. Proc. natn. Acad. Sci. U.S.A. 79, 27582762.CrossRefGoogle ScholarPubMed
Peck, R. K. (1986) Feeding behaviour in the ciliate Pseudo-microthorax dubius is a series of morphologically and physiologically distinct events. J. Protozool. In press.Google Scholar
Peck, R. K. and Hausmann, K. (1980) Primary lysosomes of the ciliate Pseudomicrothorax dubius: Cytochemical identification and role in phagocytosis. J. Protozool. 27, 401–109.CrossRefGoogle Scholar
Peck, R. K. and Duborgel, F. (1986) Effects of cations on phagocytosis in the ciliate Pseudomicrothorax dubius. J. Protozool. In press.Google Scholar
Poole, B. and Ohkuma, S. (1981) Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J. Cell Biol. 90, 665669.CrossRefGoogle ScholarPubMed
Stewart, M. J., Schulman, S. and Vanderberg, J. P. (1985) Rhoptry secretion of membranous whorls by Plasmodium berghei sporozoites. J. Protozool. 32, 280283.CrossRefGoogle ScholarPubMed
Tycko, B., Keith, C. H. and Maxfield, F. R. (1983) Rapid acidification of endocytic vesicles containing asialo-glycoprotein in cells of a human hepatoma line. J. Cell Biol. 97, 17621776.CrossRefGoogle Scholar
Vanderberg, J. P., Gupta, S. K., Schulman, S., Oppenheim, J. D. and Furthmayr, H. (1985) Role of the carbohydrate domains of glycophorins as erythrocyte receptors for invasion by Plasmodium falciparum merozoites. Infect. Immun. 41, 201210.CrossRefGoogle Scholar
Wallach, D. F. H. (1979) Membrane pathology of malaria. Cell Biol. Intern. Pep. 3, 395408.CrossRefGoogle Scholar
Weidner, E. (1975) Interactions between Encephalitozoon cuniculi and macrophages. Parasitophorous vacuole growth and the absence of lysosomal fusion. Z. Para-sitenk. 47, 19.CrossRefGoogle ScholarPubMed
Weidner, E. and Sibley, L. D. (1985) Phagocytized intra-cellular microsporidium blocks phagosome acidification and phagosome-lysosome fusion. J. Protozool. 32, 311317.CrossRefGoogle Scholar
Wolkoff, A. W., Klausner, R. D., Ashwell, G. and Harford, J. (1984) Intracellular segregation of asialoglycoproteins and their receptor: A prelysosomal event subsequent to dissociation of the ligand-receptor complex. J. Cell Biol. 98, 375381.Google Scholar
Yamashiro, D. J. and Maxfield, F. R. (1984) Acidification of endocytic compartments and the intracellular pathways of ligands and receptors. J. Cell. Biochem. 26, 231246.Google Scholar
Yamashiro, D. J., Fluss, S. R. and Maxfield, F. R. (1983) Acidification of endocytic vesicles by an ATP-dependent proton pump. J. Cell Biol. 97, 929934.CrossRefGoogle ScholarPubMed
Yayon, A., Timberg, R., Friedman, S. and Ginsburg, H. (1984) Effects of chloroquine on the feeding mechanism of the intraerythrocytic human malarial parasite Plasmodium falciparum. J. Protozool. 31, 367372.CrossRefGoogle ScholarPubMed