Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T02:41:03.307Z Has data issue: false hasContentIssue false

Seasonal changes of secondary compounds in the phloem sap of cassava in relation to fertilisation and to infestation by the cassava Mealybug

Published online by Cambridge University Press:  19 September 2011

M. Tertuliano
Affiliation:
ORSTOM, Laboratory of Entomology, B.P. 181, Brazzaville, Congo
P. A. Calatayud
Affiliation:
ORSTOM, Laboratory of Entomology, B.P. 181, Brazzaville, Congo
B. P. Le Rü*
Affiliation:
ORSTOM, Laboratory of Entomology, B.P. 181, Brazzaville, Congo
*
Corresponding author: BPLR. E-mail: [email protected]
Get access

Abstract

The aim of the present study was to determine, by a field experiment, whether the seasonal variations in the levels of cyanide and rutin in the phloem, secondary compounds potentially implicated in cassava resistance to the cassava mealybug (Phenaccocus manihoti), could be influenced by different kinds of soil fertilisation (manure, NPK, KC1, lime, mulch). It was found that mean cyanide and rutin contents varied significantly with season, soil treatments and infestation. For each soil treatment, the highest contents of these compounds on uninfested plants was registered in the main dry season (Jul-Aug) for cyanide and at the end of the dry season (Jul-Aug) and beginning of the rainy season (Oct-Nov) for rutin. The infestation factor induced an increase in cyanide and rutin contents for 43 combinations of period and soil treatment among 48 in total. For cyanide content (phagostimulant function in mealybug), this increase appeared significant at the end of the rainy season (Apr-May) and in the main dry season (Jul-Aug) for control and KC1 fertilisation. For rutin content (an unfavourable substance for the insect) significant increase was induced by infestation in each period for manure and mulch and especially in the main dry season (Jul-Aug) and at the beginning of the rainy season (Oct-Nov) for other soil treatments. Concerning the seasonal variations in the level of rutin, these results showed that mulch and manure are the best fertilisers to increase cassava resistance against mealybugs.

Résumé

L'objectif du travail présenté ici est de déterminer, par une étude de plein champ, si les variations saisonnières des teneurs phloémiennes en cyanure et rutine, composés secondaires potentiellement impliqués dans la résistance du manioc à la cochenille, pourraient être influencées par différentes fertilisations du sol (Fumier, NPK, KC1, Calcaire et Paillage). Les teneurs foliaires moyennes en cyanure et en rutine des plantes sont significativement modifiées par la saison, le traitement et l'infestation. Quelque soit le traitement, sur les plants non infestés, les teneurs maximales des deux composés sont mesurées pendant la grande saison sèche pour le cyanure et au début de la saison des pluies pour la rutine. D'une manière générale l'infestation par P.manihoti induit une augmentation des teneurs des deux composés en toute saison et quelque soit le traitement. En ce qui concerne le cyanure (substance ayant une fonction phagostimulante), la réponse à l'infestation est plus marquée en fin de saison des pluies (Av-Mai) et pendant la grande saison sèche (Jui-Aoû). En ce qui concerne la rutine (substance défavorable à l'insecte) on enregistre une forte réponse à l'infestation, en toute saison pour les traitements paillage et fumure organique. Pour les autres traitements, la réponse est plus marquée en saison sèche (Jui-Aoû) et au début de la saison des pluies (Oct-Nov). En terme de variation saisonnière des teneurs en rutine, nos résultats suggèrent que le paillage et la fumure organique améliorent la résistance du manioc à la cochenille.

Type
Research Articles
Copyright
Copyright © ICIPE 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arrivetz, J. (1990) Compte Rendu Analytique des Essais Agronomiques au C.A.I.E.M. en 1986–1990 (Edited by DGRST, Ministère de la Recherche Scientifique, R. du Congo), 87 pp.Google Scholar
Calatayud, P. A. (1993) Etude des relations nutritionnelles de la cochenille du manioc avec sa plante hôte, Thèse de Doctorat, Université de Lyon.Google Scholar
Calatayud, P. A., Rahbé, Y., Delobel, B., Khuong-Huu, F., Tertuliano, M. and Le Rü, B. (1994a) Influence of secondary compounds in the phloem sap of cassava on expression of antibiosis towards the mealybug Phenacoccus mannihoti(Homoptera: Pseudococcidae). Entomol. exp. appl. 72, 4757.CrossRefGoogle Scholar
Calatayud, P. A., Rahbé, Y., Tjallingii, W. J., Tertuliano, M. and Le Rü, B. (1994b) Electrically recorded feeding behaviour of cassava mealybug on host and non-host plants. Entomol. exp. appl. 72, 219232.CrossRefGoogle Scholar
Campbell, C. A. M. (1984) The influence of overhead shade and fertilizers on the Homoptera of mature Upper-Amazon cocoa trees in Ghana. Bull. ent. Res. 74, 163174.CrossRefGoogle Scholar
Denis, B. et De Champ, G. (1970) Etude pédologique de la région de Brazzaville, avec carte pédologique au 1/200 000, ronéo, ORSTOM, Brazzaville, 94 pp.Google Scholar
El-Sharkawy, M. A. and Cock, J. H. (1987) Response of cassava to water stress. Plant and Soil 100, 345360.CrossRefGoogle Scholar
Fennah, R. T. (1959) Nutritional factors associated with the development of mealybugs in cacao. Report of the Cacao, Research Institute of Trinidad, 1957–1958, pp. 1828.Google Scholar
Gershenzon, J. (1984) Changes in the levels of plant secondary metabolites under water and nutrient stress, 18, 273–320. In Phytochemkal Adaptations to Stress, Recent Advances in Phytochemistry (Edited by Timmermann, B. N., Steelink, C. and Loewus, F. A.). Plenum, New York.Google Scholar
Gutierrez, A. P., Neuenschwander, P., Schulthess, F., Herren, H. R., Baumgaertner, J. U., Wermelinger, B., Löhr, B. and Ellis, C. K. (1988) Analysis of biological control of cassava pests in Africa. II. Cassava mealybug Phenacoccus manihoti. J. Appl. Ecol. 25, 921940.CrossRefGoogle Scholar
Hammer, G. L. (1980) Estimation of cassava leaf area by a simple, non destructive field technic. J. Anst. Inst. Agric. Sci. 2, 6162.Google Scholar
Herren, H. R. (1987) A review of objectives and achievements. Insect Sci. Applic. 8, 837840.Google Scholar
Le Rû, B. and Tertuliano, M. (1993) Tolerance of different host-plants to the cassava mealybug Phenacoccus manihoti Matile-Ferrero (Homoptera: Pseudococcidae). Int. J. Pest Manage. 39, 379384.CrossRefGoogle Scholar
Matile-Ferrero, D. (1978) Cassava mealybug in the People's Republic of Congo, pp. 2946. In Proceedings of the International Worksliop on Cassava Mealybug Phenacoccus manihoti Mat.-Ferr. (Pseudococcidae) INERA, M'Vuazi, Zaïre, June 26–29, 1977 (Edited by Nwanze, K. F. and Leuschner, K.). IITA Press Ibadan, Nigeria.Google Scholar
McClure, M. S. (1980) Foliar nitrogen: A basis for host suitability for elongate hemlock scale, Fiorinia externa (Homoptera, Diaspididae). Ecology 61, 7279.CrossRefGoogle Scholar
Neuenschwander, P., Hammond, W. N. O., Ajuonu, O., Gado, A., Echendu, N., Bokonon-Ganta, A. H., Allomasso, R. and Okon, I. (1990) Biological control of the cassava mealybug, Phenacoccus manihoti (Horn., Pseudococcidae) by Epidinocarsis lopezi (Hym., Encyrtidae) in West Africa, as influenced by climate and soil. Agr. Eco. Env. 32, 3955.CrossRefGoogle Scholar
Neuenschwander, P., Hammond, W. N. O., Gutierrez, A. P., Cudjoe, A. R., Baumgaertner, J. U., Regev, U. and Adjakloe, R. (1989) Impact assessment of the biological control of the cassava mealybug, Phenacoccus manihoti Matile-Ferrero (Hemiptera: Pseudococcidae) by the introduced parasitoid Epidinocarsis lopezi (De Santis) (Hymenoptera: Encyrtidae). Bull Entomol. Res. 79, 579594.CrossRefGoogle Scholar
Nwanze, K. F., Leuschner, K. and Ezumah, H. C. (1979) The cassava mealybug, Phenacoccus sp. in the republic of Zaïre. Pans 25, 125130.CrossRefGoogle Scholar
Obigbesan, G. O. and Fayemi, A. A. A. (1976) Investigations on Nigerian root and tuber crops. Influence of nitrogen fertilisation on the yield and chemical composition of two cassava cultivars (Manihot esculenta). J. agric. Sci., Camb. 86, 401406.CrossRefGoogle Scholar
Painter, R. H. (1951) Insect Resistance in Crops Plants. The University Press of Kansas, Lawrence, Kansas. 120 pp.Google Scholar
Rohringer, R., Ebrahim-Nesbat, F. and Wolf, G. (1983) Proteins in intercellular washing fluids from leaves of barley (Hordeum vulgarae L.). J. Exp. Bot. 34, 15891605.CrossRefGoogle Scholar
Salama, H. S., Amin, A. H. and Hawash, M. (1972) Effect of nutrients supplied to Citrus seedlings on their susceptibility to infestation with the scale insects Aonidiella aurantii (Maskell) and Lepidosaphcs beckii (Newman) (Coccidae). Zeitschrift für Angewandte Entomologi 71, 395405.CrossRefGoogle Scholar
Scriber, J. M. (1984) Host-plant suitability. In Chemical Ecology of Insects (Edited by Bell, W. J. and Carde, R. T.). Chapman & Hall, London.Google Scholar
Silvestre, P. et Arraudeau, M. (1983) Le Manioc (Edited by Maisonneuve, G. P. and Larose, ). Agence de coopération Culturelle et Technique, Paris, France. 262 pp.Google Scholar
Smirnoff, W. A. et Valero, J. (1975) Effects a moyen de la fertilisation par urée ou par potassium sur Pinus banksiana L. et au comportement de ses insectes dévastateurs: Tel que Neodiprion swainei et Toumeyella numismaticum. Can. J. Rech. For. 5, 236244.CrossRefGoogle Scholar
Soltner, D. (1985) Les bases de la production végétale. Tome I: Le sol et son amélioration. 12è édition. Coll. Sciences et Techniques Agricoles. Phytotech. gén.Google Scholar
Tertuliano, M. et Le Rü, B. (1992) Interaction entre la cochenille du manioc Phenacoccus manihoti et ses différentes plantes-hôtes: Etude de la teneur de la sève en acide aminé et en sucre. Entomol. exp. appl. 64, 19.CrossRefGoogle Scholar
Tertuliano, M., Dossou-Gbete, S. and Le Rü, B. (1993) Antixenotic and antibiotic components of resistance to the cassava mealybug (Phenacoccus manihoti) (Horn. Pseudococcidae) in various host-plants. Insect Sci. Applic. 14, 657665.Google Scholar
Thompson, W. L. (1941) Pest control studies. Effect of fertilisers on purple scale development. Report of the Florida Agricultural Experiment Station 1939–1940, pp. 158160.Google Scholar
Waring, G. L. and Cobb, N. S. (1992) The impact of plant stress on herbivore population dynamics, pp. 167226. In Insect-Plant Interactions, Vol. IV (Edited by Bernays, E. A.). CRC Press, USA.Google Scholar
Washburn, J. A., Grace, J. K. and Frankie, G. W. (1987) Population responses of Pulvinariella mesembryanthemi and Pulvinaria delottoi (Homoptera: Coccidae) to nitrogen and water conditions of their host plant. Environ. Entomol. 16, 286295.CrossRefGoogle Scholar
Waterman, P. G. and Mole, S. (1989) Extrinsic factors influencing production of secondary metabolites in plants, pp. 107134. In Insect-Plant Interactions, Vol. I (Edited by Bernays, E. A.). CRC Press, USA.Google Scholar
Yao, N. R., Goué, B., Zeller, B. and Monteny, B. (1988) Effect of drought on leaf development and dry matter production of the cassava (Manihot esculenta Crantz) plant. Trop. Agric. (Trinidad) 65, 8488.Google Scholar