Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T19:41:07.111Z Has data issue: false hasContentIssue false

Potential for the use of genetic methods for the control of Chilo spp.

Published online by Cambridge University Press:  19 September 2011

V. A. O. Okoth
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), Mbita Point Field Station, P. O. Box 30, Mbita, Kenya
Get access

Abstract

The control of pest populations through the manipulation of their genetic component or mechanism of inheritance is becoming increasingly important. Two of the most promising genetic methods for the control of iepidopteran insects are inherited or F1 and hybrid sterility.

To induce F1 sterility in C. partellus, male pupae were irradiated with various doses of gamma radiation (0–15 krad) and emerging adults of normal appearance were used in crosses with normal females. The F1 progeny were reared on artificial diet and the resulting adult males were crossed with unirradiated females to give F2, the process being repeated until F5 progeny were obtained. For each generation lifespan of males, oviposition, egg hatchability and sex ratio were carefully recorded. The results showed that females mated with irradiated males oviposited significantly fewer eggs than normal and that this phenomenon was perpetuated over several generations. Hatchability of eggs laid by females mated to irradiated males or male progeny was significantly lower than that of the controls and sex ratio was distorted slightly in favour of males in all generations observed. The lower oviposition, lower egg hatch, distortion of sex ratio in favour of males and the apparent persistence of sterility over several generations offer the potential of inherited sterility for the control of C. partellus.

Résumé

L'utilisation des manipulations génétiques et des mécanismes d'hérédite, comme moyens de lutte contre les ravageurs de cultures devient de plus en plus importante. La stérilité héritée ou stérilité en F1 sont les deux methods les plus promettantes.

Pour induire la stérilité en F1 chez C. partellus males, des pupes ont été exposes à des doses varieés de rayons gamma (0–15 krad), les adultes d'apparence normale qui ont émergés ont été croisés avec des femelles normales. La génération F1 obtenue a été éleve sur un milieu de culture artificiel et ses adultes mâles ont été croisés une fois de plus avec des femelles normales produisant ainsi la génération F2. Cet exercise a été répété jusqu'a l'obtension de la génération F5. Pour chacune des generations la durée de vie des mâles, l'oviposition, l'éclosion des oeufs et le taux sexuel ont été soigneusement enregistrés. Les résultats ont montré que les femelles croisées avec des mâles irradiés pondaient peu d'oeufs par rapport à la normale et que ce phénomenè se répétait sur plusieurs générations.

D'autre part l'éclosion des oeufs ainsi obtenus a été significativement plus basse que celle des contrôles et le taux sexuel change légèrement en faveur des mâles dans toutes les générations observées. La baisse de l'oviposition, de l'éclosion des oeufs, la modification du taux sexuel en faveur des mâles et la persistance apparente de la stérilité sur plusieurs générations contribuent à la sterilité héritée qui est un moyen potentiel de lutte contre C. partellus.

Type
Cultural, Genetic and Chemical Control
Copyright
Copyright © ICIPE 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baumhover, A. H., Graham, A. H. and Bitter, B. A. (1955) Screw worm control through the release of sterilized flies. J. econ. Entomol. 48, 462–460.Google Scholar
Bushland, R. C. (1971) Sterility principle for insect control: Historical development and recent innovations. In Sterility Principle for Insect Control or Eradication, pp. 314. IAEA, Vienna.Google Scholar
Cheng, W. Y. and North, D. T. (1972) Inherited sterility in the F1 progeny of irradiated male pink bollworms. J. econ. Entomol. 65, 12721275.CrossRefGoogle ScholarPubMed
Goldschmidt, R. (1955) Theoretical Genetics. Berkeley, California University California Press.Google Scholar
Hughes-Schrader, S. and Ris, H. (1941) The diffuse spindle attachment of coccids verified by the mitotic behaviour of induced chromosome fragments. J. Exp. Zool. 87, 429456.CrossRefGoogle Scholar
Knipling, E. F. (1970) Suppression of pest Lepidoptera by releasing partially sterile males. A theoretical appraisal. Bioscience 20, 465470.Google Scholar
La Chance, L. E. (1983) Genetic methods for the control of lepidopteran species—status and potential. Proceedings of the Joint FAOIIAEA Consultants' Meeting on F1 Sterility Oct.-Nov. 1983. IAEA, Vienna.Google Scholar
La Chance, L. E., Schmidt, C. H. and Bushland, R. C. (1967) Radiation-induced sterilization. In Pest Control, Biological, Physical and Selected Chemical Methods (Edited by Kilgore, W. W. and Doutt, R. L.), pp. 147196. Academic Press, New York.Google Scholar
Mittwoch, U. (1967) Sex Chromosomes. Academic Press, New York.CrossRefGoogle Scholar
North, D. T. (1967) The cytogenetic basis of radioresistance in lepidopteran species, Trichoplusia ni (Abstr.) Radiat. Res. 31, 615.Google Scholar
North, D. T. (1975) Inherited sterility in Lepidoptera. Annu. Rev. Entomol. 20, 167182.Google Scholar
North, D. T. and Holt, G. G. (1969) Population suppression by transmission of inherited sterility to progeny of irradiated cabbage looper, Trichopsia ni. Can. Entomol. 101, 513520.Google Scholar
North, D. T. and Holt, G. G. (1970) Population control of Lepidoptera. The genetic and physiological basis. Manit. Entomol. 4, 5369.Google Scholar
North, D. T. and Holt, G. G. (1971) Inherited sterility and its use in population suppression of Lepidoptera. In Application of Induced Sterility for the Control of Lepidoptera Populations IAEA, Vienna, pp. 99111.Google Scholar
Proshold, F. I. and Bartell, J. A. (1970) Inherited sterility in the progeny of irradiated male tobacco budworm: Effects on reproduction, developmental time and sex ratio. Manit. Entomol. 63, 280285.Google Scholar
Proverbs, M. D. (1962) Progress on the use of induced sexual sterility for the control of the codling moth, Carpocapsa pomonella (L.). Proc. Entomol. Soc. Ontario 92, 511.Google Scholar
Proverbs, M. D. and Newton, J. R. (1962) Some effects of gamma radiation in the reproductive potential of the codling moth, Carpocapsa (L.). Can. Entomol. 96, 11621170.CrossRefGoogle Scholar
Robinson, R. (1971) Lepidoptera Genetics. Pergamon Press, New York.Google Scholar
Taxima, Y. (1964) The Genetics of the Silkworm. Lagos, London.Google Scholar
Virkki, N. (1963) Gametogenesis in the sugar-cane borer moth, Diatraea saccharalis (F.). J. Agric. Univ. Puerto Rico 47, 102137.CrossRefGoogle Scholar
White, M. J. D. (1973) Animal Cytology and Evolution. Cambridge Univ. Press, London. 3rd ed.Google Scholar