Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-29T18:36:53.377Z Has data issue: false hasContentIssue false

Pod Surface Characteristics in Wild and Cultivated Vigna Species and Resistance to the Coreid Bug Clavigralla tomentosicollis Stal. (Hemiptera: Coreidae)

Published online by Cambridge University Press:  19 September 2011

P. Koona*
Affiliation:
International Institute of Tropical Agriculture, P.M.B. 5320, Ibadan, Nigeria Department of Crop Protection and Environmental Biology, University of Ibadan Ibadan, Nigeria
E.O. Osisanya
Affiliation:
Department of Crop Protection and Environmental Biology, University of Ibadan Ibadan, Nigeria
L.E.N. Jackai
Affiliation:
International Institute of Tropical Agriculture, P.M.B. 5320, Ibadan, Nigeria
M. Tamo
Affiliation:
International Institute of Tropical Agriculture, P.M.B. 5320, Ibadan, Nigeria
J. Reeves
Affiliation:
International Institute of Tropical Agriculture, P.M.B. 5320, Ibadan, Nigeria
J. d′A. Hughes
Affiliation:
International Institute of Tropical Agriculture, P.M.B. 5320, Ibadan, Nigeria
Get access

Abstract

Several Vigna species were used to determine the role of pod trichomes and pod toughness in the resistance of cowpea to feeding damage by the coreid bug Clavigralla tomentosicollis Stal. The scanning electron microscopy study revealed the presence of glandular and non-glandular trichomes on the pod wall of all test genotypes. The cultivated genotypes TVu 1890, TVu 3354 and IT84S-2246 of the V. unguiculata ssp. unguiculata showed significantly lower (P<0.05) densities of glandular trichomes than accessions of the wild Vigna species (TVnu 72, TVnu 151, and TVnu 707). All pods were similar with respect to the density and length of non-glandular trichomes. The two wild accessions TVnu 151 and TVnu 707 of the V. unguiculata ssp. dekindtiana had low pod, strength similar to that of the susceptible genotype IT84S-2246, and also showed high seed damage levels comparable to that of this susceptible genotype. These accessions of the subspecies dekindtiana contrasted with the wild and resistant accession TVnu 72 of the V. vexillata species which suffered minor seed damage in spite of its low pod strength. The association between high pod strength and low seed damage was found only in the two cultivated genotypes TVu 1890 and TVu 3354. Our results suggest that tough pod wall and high density of glandular trichomes can be combined to achieve enhanced resistance to C. tomentosicollis in cultivated Vigna genotypes.

Résumé

Plusieurs espèces de Vigna ont été utilisées pour déterminer le rôle de la pilosité et de la durété des parois des gousses dans la résistance du niébé contre les dégâts causés par Clavigralla tomentosicollis Stal. L'étude microscopique des gousses avec le scanner électronique a revélé que toutes les variétés sélectionnées possédaient les poils à glandes et les poils sans glandes, la densité des poils à glandes des variétés cultivées (TVu 1890, TVu 3354, et IT84S-2246) étant significativement inférieure (P<0.05) à celle des variétés sauvages (TVnu 72, TVnu 151, et TVnu 707). Toutes les variétés avaient la même (P>0.05) densité et longueur des poils sans glandes. Les deux variétés sauvages TVnu 151 et TVnu 707 de l'espèce V. unguiculata ssp. dekindtiana ainsi que le témoin sensible IT84S-2246 ont montré les parois les moins dures et subi les plus grands dégâts, contrastant avec les variétés TVu 1890 et TVu 3354 qui, avec les parois les plus dures, n'ont subi que de faibles dégâts. Le temoin resistant TVnu 72 de l'espèce V. vexillata a enregistré les plus faibles dégâts bien que possédant les parois les moins dures. Nos resultats suggèrent qu'une resistance plus accrue du niébé contré C. tomentosicollis pourrait être obtenue en combinant la durété des parois des gousses avec une densité élevée de poils à glandes dans les variétés cultivées.

Type
Research Articles
Copyright
Copyright © ICIPE 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barone, A., Giudice, A. D. and Ng, N. Q. (1992) Barriers to interspecific hybridization between Vigna unguiculata and V. vexillata. Sexual Plant Reproduction 5, 195200.CrossRefGoogle Scholar
Chiang, H. S. and Jackai, L.E.N. (1988) Tough pod wall: A factor involved in cowpea resistance to Dod sucking bugs. Insect Sci. Applic: 9, 389393.Google Scholar
Dreyer, H. and Baumgärtner, J. (1995) The influence of post-flowering pests on cowpea seed yield with particular reference to damage by Heteroptera in southern Benin. Agric, Ecosyst. Environ. 53, 137149.Google Scholar
Duffey, S.S. (1986) Plant glandular trichomes: Their partial role in defence against insects, pp. 151172. In Insects and the Plant Surface (Edited by Juniper, B. and Southwood, S.R.). Edward Arnold, London.Google Scholar
Fatokun, C.A. and Singh, B. B. (1987) Interspecific hybridization between Vigna pubescens and Vigna unguiculata [L.] Walp. through embryo rescue. Plant Celi Tissue and Organculture 9, 229233.CrossRefGoogle Scholar
Hammond, C. T. and Mahlberg, P. G. (1973) Morphology of glandular hairs of Cannabis sativa from scanning electron microscope. Am. J. Bot. 60, 524528.CrossRefGoogle Scholar
Knuth, E. L. (1966) Introduction to Statistical Thermodynamics. McGraw-Hill Book Company. New York. 238 pp.Google Scholar
Koona, P. (1999) Anatomical and biochemical basis of resistance of wild and cultivated Vigna species to the coreid bug Clavigralla tomentosicollis Stal (Hemiptera: Coreidae). PhD Thesis, University of Ibadan, Ibadan, Nigeria.Google Scholar
Koona, P., Osisanya, E.O., Jackai, L. E. N., Tamo, M., Tonye, J. and Ngeve, J. M. (2001) Interaction between pod age and position on damage to cowpea Vigna unguiculata by hemipteran pod-sucking bugs. Bull. Entomol. Res. 91, 453459.CrossRefGoogle ScholarPubMed
Marconi, E., Ruggeri, S. and Carnovale, E. (1997) Chemical evaluation of wild under-exploited Vigna spp. seeds. Food Chem. 59, 203212.CrossRefGoogle Scholar
Oghiakhe, S., Jackai, L.E.N., Makanjuola, W.A. and Hodgson, C.J. (1992) Morphology, distribution, and the role of trichomes in cowpea (Vigna unguiculata) resistance to the legume pod borer, Maruca testulalis (Lepidoptera: Pyralidae). Bull. Entomol. Res. 82, 499505.CrossRefGoogle Scholar
Ogunbodede, B.A. and Fatunla, T. (1985) Quantitative studies of some cowpeas (Vigna unguiculata [L.] Walp.) traits. E. Afr. Agric. For. J. 50, 89100.CrossRefGoogle Scholar
Owusu-Akyaw, (1987) Resistance of different varieties of cowpea (Vigna unguiculata [L.] Walp.) to attack by the cowpea storage weevil, Callosobruchus maculatus F. (Coleoptera: Bruchidae). PhD Thesis, Univ. Sci. Tech., Kumasi, Ghana.Google Scholar
Panda, N. and Khush, G.S. (1995) Host Plant Resistance to Insects. CAB International and IRRI. 431 pp.Google Scholar
Scriber, J.M. (1984) Host plant suitability, pp. 160202. In Chemical Ecology of Insects (Edited by Bell, W. J. and Cardé, R.T.). Chapman and Hall, London.Google Scholar
Siddique, A.K.M.A.R. and Gupta, S.N. (1991) Genotypie and phenotypic variability for seed yield and other traits in cowpea (Vigna unguiculata [L.] Walp.). Intl. J. Trop. Agric. 9, 144148.Google Scholar
Singh, S. R. and Jackai, L.E.N. (1985) Insect pests of cowpeas in Africa: Their life cycle, economic importance and potential for control, pp. 217231. In Cowpea Research, Production and Utilization (Edited by Singh, S. R. and Rachie, K. O.). John Wiley and Sons, London.Google Scholar
Tayo, T.O. (1989) Anatomical basis of cowpea resistance to the pod borer, Manica testulalis (Geyer). Insect Sci. Applic. 10, 631638.Google Scholar
Yencho, G. C. and Tingey, W. M. (1994) Glandular trichomes of Solanum berthaultii alter host preference of the Colorado potato beetle, Leptinotarsa decemlineata. Entomol. Exp. Appl. 70, 217225.CrossRefGoogle Scholar
Yu, H. F., Kowalski, S. P. and Steffens, J. C. (1992) Comparison of polyphenol oxidase expression in glandular trichomes of Solanum and Lycopersicon species. Plant Physiol. 100, 18851890.CrossRefGoogle ScholarPubMed