Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T16:54:57.993Z Has data issue: false hasContentIssue false

Pesticide resistance in Plutella xylostella (Lepidoptera: Plutellidae) populations from Togo and Benin

Published online by Cambridge University Press:  17 August 2016

L. K. Agboyi
Affiliation:
UR Défense des Cultures et Biotechnologie Végétale, Institut Togolais de Recherche Agronomique (ITRA), Lomé, BP 1163, Togo Université de Lomé, Laboratoire d'Entomologie Appliquée, Unité de Recherche en Ecotoxicologie, 01 BP 1515 Lomé 01, Togo
G. K. Ketoh
Affiliation:
Université de Lomé, Laboratoire d'Entomologie Appliquée, Unité de Recherche en Ecotoxicologie, 01 BP 1515 Lomé 01, Togo
T. Martin
Affiliation:
Cirad UR Hortsys, Campus de Baillarguet, 34980 Montferrier sur Lez, France International Centre of Insect Physiology and Ecology (icipe), PO Box 30772-00100, Nairobi, Kenya
I. A. Glitho
Affiliation:
Université de Lomé, Laboratoire d'Entomologie Appliquée, Unité de Recherche en Ecotoxicologie, 01 BP 1515 Lomé 01, Togo
M. Tamò*
Affiliation:
International Institute of Tropical Agriculture (IITA), Benin Station, 08 BP 0932, Cotonou, Benin
*
Get access

Abstract

The diamondback moth, Plutella xylostella (L.) is the major insect pest of cabbage crops in Togo and Benin. For control, farmers very often resort to spraying chemical insecticides at high dosages with frequent applications. Bioassays were carried out on three populations of P. xylostella, two from Togo (Kara and Dapaong) and one from Benin (Cotonou), to assess their level of susceptibility to currently used insecticides. A reference strain of P. xylostella from Matuu in Kenya was used as a control. In the laboratory, three insecticide representatives of different chemical families (deltamethrin, chlorpyrifos ethyl and spinosad) were assayed against third instar larvae of P. xylostella. Results revealed that P. xylostella populations from Dapaong, Kara and Cotonou were more resistant to deltamethrin (13 to 59-fold at LC50 level, 149 to 1772-fold at LC90 level) and chlorpyrifos ethyl (5 to 15-fold at LC50 level, 9 to 885-fold at LC90 level) than the reference strain. Spinosad was more toxic to P. xylostella populations than the other insecticides with LC50 and LC90 values less than 1 µg/ml and 15 µg/ml, respectively. However, the population from Cotonou appeared significantly more resistant to spinosad compared to the reference strain. These results are discussed in the light of developing an integrated pest management strategy for reducing the selection pressure of spinosad.

Type
Research Paper
Copyright
Copyright © icipe 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W. S. (1925) A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265267.Google Scholar
Agboyi, L. K., Djade, K. M., Ahadji-Dabla, K. M., Ketoh, G. K., Nuto, Y. and Glitho, I. A. (2015) Vegetable production in Togo and potential impact of pesticides use practices on the environment. International Journal of Biological and Chemical Sciences 9, 723736.Google Scholar
Agboyi, L. K., Ketoh, G. K., Martin, T. and Glitho, A. I. (2013) Beauveria bassiana 5653 could be an alternative to synthetic insecticides against Plutella xylostella in Togo, pp. 249253. In Harnessing Pesticidal Plant Technologies for Improved Livelihoods. Proceedings of the First International Conference on Pesticidal Plants (ICPP)(edited by Ogendo, J. O., Lukhoba, C. W., Bett, P. K. and Machocho, A. K.). Egerton University, Kenya.Google Scholar
Ahouangninou, C., Martin, T., Edorh, P., Bio-Bangana, S., Onil, S., St-Laurent, L., Dion, S. and Fayomi, B. (2012) Characterization of health and environmental risks of pesticide use in market-gardening in the rural city of Tori-Bossito in Benin, West Africa. Journal of Environmental Protection 3, 241248.Google Scholar
Arvanitakis, L., David, J.-F. and Bordat, D. (2014) Incomplete control of the diamondback moth, Plutella xylostella, by the parasitoid Cotesia vestalis in a cabbage field under tropical conditions. BioControl 59, 671679.Google Scholar
Ayalew, G. (2006) Comparison of yield loss on cabbage from diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae) using two insecticides. Crop Protection 25, 915919.Google Scholar
Baek, J. H., Kim, J. I., Lee, D.-W., Chung, B. K., Miyata, T. and Lee, S. H. (2005) Identification and characterization of ace1-type acetylcholinesterase likely associated with organophosphate resistance in Plutella xylostella . Pesticide Biochemistry and Physiology 81, 164175.Google Scholar
CNAC [Comité National d'Agrément et de Contrôle des Produits Phytopharmaceutiques] (2012) Liste des produits phytopharmaceutiques sous autorisation provisoire de vente (APV) et agrément homologation (AH). Liste actualisée en Janvier 2012. Comité National d'Agrément et de Contrôle des Produits Phytopharmaceutiques, République du Bénin.Google Scholar
Finney, D. J. (1971) Probit Analysis (3rd ed.). Cambridge University Press, London, UK.Google Scholar
Gallivan, G. J., Surgeoner, G. A. and Kovach, J. (2001) Pesticide risk reduction on crops in the province of Ontario. Journal of Environmental Quality 30, 798813.Google Scholar
Godonou, I., James, B., Atcha-Ahowé, C., Vodouhè, S., Kooyman, C., Ahanchédé, A. and Korie, S. (2009) Potential of Beauveria bassiana and Metarhizium anisopliae isolates from Benin to control Plutella xylostella L. (Lepidoptera: Plutellidae). Crop Protection 28, 220224.Google Scholar
Goudegnon, E. A., Kirk, A. A., Schiffers, B. and Bordat, D. (2000) Comparative effects of deltamethrin and neem kernel solution treatments on diamondback moth and Cotesia plutellae (Hym.: Braconidae) parasitoid populations in the Cotonou peri-urban area in Benin. Journal of Applied Entomology 124, 141144.Google Scholar
Grzywacz, D., Rossbach, A., Rauf, A., Russell, D. A., Srinivasan, R. and Shelton, A. M. (2010) Current control methods for diamondback moth and other brassica insect pests and the prospects for improved management with lepidopteran-resistant Bt vegetable brassicas in Asia and Africa. Crop Protection 29, 6879.Google Scholar
James, B., Atcha-Ahowé, C., Godonou, I., Baimey, H., Georgen, G., Sikirou, R. and Toko, M. (Eds) (2010) Integrated Pest Management in Vegetable Production: A Guide for Extension Workers in West Africa. International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria. 120 pp.Google Scholar
Kahuthia-Gathu, R. (2011) Seasonal incidence of Plutella xylostella (Lepidoptera: Plutellidae) and its associated natural enemies in major crucifer growing areas of Kenya. Journal of Applied Biosciences 46, 31033112.Google Scholar
Kfir, R. (2005) The impact of parasitoids on Plutella xylostella populations in South Africa and the successful biological control of the pest on the island of St. Helena, pp. 132141. In Proceedings of the Second International Symposium on Biological Control of Arthropods (edited by Hoddle, M. S.). USDA Forest Service Publication FHTET-2005-08.Google Scholar
Legwaila, M. M., Munthali, D. C., Obopile, M. and Kwerepe, B. C. (2014) Effectiveness of spinosad against diamondback moth (Plutella xylostella L.) eggs and larvae on cabbage under Botswana conditions. International Journal of Insect Science 6, 1521.Google Scholar
LeOra Software (2003) PoloPlus© Probit and Logit Analysis. User's Manual. LeOra Software, Berkeley, California.Google Scholar
Liu, S.-S., Li, Z.-M., Liu, Y.-Q., Feng, M.-G. and Tang, Z.-H. (2007) Promoting selection of resistance to spinosad in the parasitoid Cotesia plutellae by integrating resistance of hosts to the insecticide into the selection process. Biological Control 41, 246255.Google Scholar
Manyangarirwa, W., Zehnder, G. W., McCutcheon, G. S., Smith, J. P., Adler, P. H. and Mphuru, A. N. (2009) Parasitoids of the diamondback moth on brassicas in Zimbabwe, pp. 565570. In 9th African Crop Science Conference Proceedings (edited by Tenywa, J. S., Joubert, G. D., Marais, D., Rubaihayo, P. R. and Nampala, M. P.). African Crop Science Society, Kampala, Uganda.Google Scholar
Martin, T., Assogba-Komlan, F., Houndete, T., Hougard, J. M. and Chandre, F. (2006) Efficacy of mosquito netting for sustainable small holders’ cabbage production in Africa. Journal of Economic Entomology 99, 450454.Google Scholar
Martin, T., Simon, S., Parrot, L., Assogba Komlan, F., Vidogbena, F., Adegbidi, A., Baird, V., Saidi, M., Kasina, M., Wasilwa, L. A., Subramanian, S. and Ngouajio, M. (2015) Eco-friendly nets to improve vegetable production and quality in sub-Saharan Africa. Acta Horticulturae 1105, 221228. doi: 10.17660/ActaHortic.2015.1105.31 http://dx.doi.org/10.17660/ActaHortic.2015.1105.31.Google Scholar
Ninsin, K. D., Mo, J. and Miyata, T. (2000) Decreased susceptibilities of four field populations of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae), to acetamiprid. Applied Entomology and Zoology 35, 591595.Google Scholar
Nyambo, B. and Löhr, B. (2005) The role and significance of farmer participation in biocontrol-based IPM for brassica crops in East Africa, pp. 290301. In Proceedings of the Second International Symposium on Biological Control of Arthropods (edited by Hoddle, M. S.). USDA Forest Service Publication FHTET-2005-08.Google Scholar
Nyambo, B., Sevgan, S., Chabi-Olaye, A. and Ekesi, S. (2011) Management of alien invasive insect pest species and diseases of fruits and vegetables: experiences from East Africa. Acta Horticulturae 911, 215222.Google Scholar
Odhiambo, J. A. O., Gbewonyo, W. S. K., Obeng-Ofori, D., Wilson, M. D., Boakye, D. A. and Brown, C. (2010) Resistance of diamondback moth to insecticides in selected cabbage farms in southern Ghana. International Journal of Biological and Chemical Sciences 4, 13971409.Google Scholar
Oliveira, A. C., Siqueira, H. A. A., Oliveira, J. V., Silva, J. E. and Michereff Filho, M. (2011) Resistance of Brazilian diamondback moth populations to insecticides. Scientia Agricola 68, 154159.Google Scholar
Pimentel, D., Wilson, C., McCullum, C., Huang, R., Dwen, P., Flack, J., Tran, Q., Saltman, T. and Cliff, B. (1997) Economic and environmental benefits of biodiversity. BioScience 47, 747757.Google Scholar
Robertson, J. L., Russell, R. M., Preisler, H. K. and Savin, N. E. (2007) Bioassays with Arthropods (2nd ed.). CRC Press, Boca Raton, FL, USA. 199 pp.Google Scholar
Rowell, B., Bunsong, N., Satthaporn, K. and Doungsa-ard, C. (2005) Hymenopteran parasitoids of diamondback moth (Lepidoptera: Ypeunomutidae) in northern Thailand. Journal of Economic Entomology 98, 449456.Google Scholar
Salgado, V. L. and Sparks, T. C. (2005) The spinosyns: chemistry, biochemistry, mode of action, and resistance, pp. 137173. In Comprehensive Molecular Insect Science Vol. 6 (edited by Gilbert, L. I., Iatrou, K. and Gill, S. S.). Elsevier B.V., Oxford, UK.Google Scholar
Santos, V. C., Siqueira, H. A. A., Silva, J. E. and Farias, M. J. D. C. (2011) Insecticide resistance in populations of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), from the state of Pernambuco, Brazil. Neotropical Entomology 40, 264270.Google Scholar
Sarfraz, M., Keddie, A. B. and Dosdall, L. M. (2005) Biological control of the diamondback moth, Plutella xylostella: a review. Biocontrol Science and Technology 15, 763789.Google Scholar
Sayyed, A. H., Saeed, S., Noor-ul-ane, M. and Crickmore, N. (2008) Genetic, biochemical, and physiological characterization of spinosad resistance in Plutella xylostella (Lepidoptera: Plutellidae). Journal of Economic Entomology 101, 16581666.Google Scholar
Sow, G., Diarra, K., Arvanitakis, L. and Bordat, D. (2013a) The relationship between the diamondback moth, climatic factors, cabbage crops and natural enemies in a tropical area. Folia Horticulturae 25, 312.Google Scholar
Sow, G., Niassy, S., Sall-Sy, D., Arvanitakis, L., Bordat, D. and Diarra, K. (2013b) Effect of timely application of alternated treatments of Bacillus thuringiensis and neem on agronomical particulars of cabbage. African Journal of Agricultural Research 8, 61646170.Google Scholar
Sparks, T. C., Thompson, G. D., Larson, L. L., Kirst, H. A., Jantz, O. K., Worden, T. V., Hertlein, M. B. and Busacca, J. D. (1995) Biological characteristics of the spinosyns: a new class of naturally derived insect control agents, pp. 903907. In Proceedings of Beltwide Cotton Conference, San Antonio, TX, USA; 4–7 January 1995. National Cotton Council, Memphis, TN, USA. http://www.cotton.org/journal/author/beltwide.cfm.Google Scholar
Talekar, N. S. and Shelton, A. M. (1993) Biology, ecology, and management of diamondback moth. Annual Review of Entomology 38, 275301.Google Scholar
Thompson, G. D., Dutton, R. and Sparks, T. C. (2000) Spinosad – a case study: an example from a natural products discovery programme. Pest Managment Science 56, 696702.Google Scholar
Tuzmen, N., Candan, N., Kaya, E. and Demiryas, N. (2008) Biochemical effects of chlorpyrifos and deltamethrin on altered antioxidative defense mechanisms and lipid peroxidation in rat liver. Cell Biochemistry and Function 26, 119124.Google Scholar
Williamson, S., Little, A., Arif Ali, M., Kimani, M., Meir, C. and Oruko, L. (2003) Aspects of cotton and vegetable farmers' pest management decision-making in India and Kenya. International Journal of Pest Management 49, 187198. doi: 10.1080/0967087031000085015.Google Scholar
Zhao, J.-Z., Collins, H. L., Li, Y.-X., Andaloro, J. T., Mau, R. F. L., Boykin, R., Thompson, G. D., Hertlein, M. and Shelton, A. M. (2006) Monitoring of diamondback moth (Lepidoptera: Plutellidae) resistance to spinosad, indoxacarb, and emamectin benzoate. Journal of Economic Entomology 99, 176181.Google Scholar
Zhou, L. J., Huang, J. G. and Xu, H. H. (2011) Monitoring resistance of field populations of diamondback moth Plutella xylostella L. (Lepidoptera: Yponomeutidae) to five insecticides in South China: a ten-year case study. Crop Protection 30, 272278.Google Scholar