Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-07T11:12:26.777Z Has data issue: false hasContentIssue false

The pathogenicity of two isolates of Pythium spp. to mosquito larvae in the laboratory

Published online by Cambridge University Press:  19 September 2011

E. S. Nnakumusana
Affiliation:
Department of Entomology, Uganda Virus Research Institute, P.O. Box 49, Entebbe, Uganda
Get access

Abstract

Motile zoospores, the only infective stage of Pythium species, attached, encysted and infected 100% second instar larvae of Aedes aegypti, Aedes africanus, Aedes simpsoni, and Anopheles gambiae. Motile zoospores variably attached and infected Culex spp. and Eretmopodites but did not attack field collected Toxorhynchites sp. We observed mycelial development within the exposed larvae after exposure indicating that mortality was due to the fungus. The fungus infected 75 ± 10% (SD) second instar larvae of Aedes aegypti, under aseptically reared conditions. It infected 65 ± 12.8% (SD) second instar larvae of Culex quinquefasciatus in aseptic conditions in the laboratory. All field collected larvae were heavily infested with vorticella but after treatment with 5% sodium hypochlorite, control mortalities ranged from 0 to 8.6% (mean = 4.3%).

The fungus was most infective between 20–27.5°C; at 30°C many zoospores were attached to the cuticle but did not infect. Mortality rates were as low as 51.5% at 30°C, with no infection at all at 35°C. pH range from 6–8 was optimum for infection, but pH above 8 inhibited infection. Infection level of 100% was obtained in aseptically reared larvae at higher densities of 1600 larvae of second instar larvae of Aedes aegypti and 97% infection for 1600 second instar larvae of C. quinquefasciatus when exposed to fungal infection. Phosphate, borate and acetate buffers inhibited zoospore production.

Résumé

L'étape de mobilité des zoospores est la seule étape infectieuse du Pythium, c'est-à-dire, que les espèces s'attachent, enkystent et infectent a 100% les larves d'Aedes aegypti, Aedes africanus, Aedes simpsoni, au cours de leur deuxième étape larvaire. Les zoospores mobiles se sont attachés et d'une facon inconstante, ont infecté les espèces Culex et Eretmopodites mais ne se sont pas ataches aux espèces Toxorhynchites-collectées sur le terrain. Nous avons observé une croissance chez les larves après l'exposition signifiant que la mortalité etait due au mycète.

Le mycète a infecté 75 ± 10% (SD) des larves d' Aedes aegypti au cours de leur 2 ème étape larvaire, dans des conditions aseptiques. Il a infecté 65 ± 12,8% (SD) de larves de Culex quinquefasciatus dans leur 2 ème étape larvaire dans des conditions aseptiques au laboratoire. Toutes les larves collectées sur le terrain étaient largement infectées de vorticella mais après un traitement à l'hypochlorate de sodium, la mortalité dans les cas témoins se situait entre 0% et 8.6% (moyenne = 4,3%). Le mycète était plus infectieux entre 20–27,5°C, à 30°C, plusieurs zoospores s'attachaient à la cuticule mais ne provoquaient pas une infection.

Les taux de mortalité atteignaient 51,5% à 30°C avec absence totale d'infection à 35°C. L'infection était optimale pour la catégorie de pH entre 6–8; tandis qu'au-delà de 8, l'infection était inhibée. Un niveau d'infection de 100% était réalisé chez les larves dont la croissance était assurée dans des conditions aseptiques, à des densites élevées de 1600 larves d'Aedes aegypti au cours de leur deuxième étape larvaire – 97% d'infection était réalisée chez 1600 larves de C. quinquefasciatus au cours de la deuxième étape larvaire dans le cas d'une exposition à une infection de mycète.

Des tampons de phosphate, d'acetate et de borate inhibaient la production de zoospores.

Type
Research Articles
Copyright
Copyright © ICIPE 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armstrong, J. A. (1961) The maintenance of a colony of Anopheles gambiae with observations on changes in temperature. Bull. WHO. 24, 427–35.Google ScholarPubMed
Clark, T. B., Kellen, W. R., Lindegren, J. E. and Sanders, R. D. (1966) Pythium Sp (Phycomycetes: Pythiales) Pathogenic to mosquito larvae. J. Invert. Path. 8, 351354.CrossRefGoogle Scholar
Ferron, P. (1978) Biological control of Insect pests by Entomogenous fungi. Ann. rev. Entomol. 23, 409–42.CrossRefGoogle Scholar
Hall, R. A. and Papierok, B. (1982) Fungi as biolgical control agents of arthropods of agricultural and medical importance. Parasitology 84, 205240.CrossRefGoogle Scholar
Mclnnis, T. Jr and Zattau, W. C. (1982) Experimental infection of mosquito larvae by a species of the aquatic fungus Leptolegnia. J. Invert. Path. 39, 98104.Google Scholar
Mohamed, A. K. A. (1977) Susceptibility of Heliothis zea larvae to Nomuraea rileyi at various temperatures. J. Invert. Path. 30, 414417.CrossRefGoogle Scholar
Moore, C. G. and Fisher, B. R. (1969) Competition in mosquitoes. Density and species ratio effects on growth, mortality, fecundity and production of growth retardants. Sci. Amer. 62, 13251331.Google Scholar
Mogi, Motoyoshi (1979) Dispersal of Culex tritaeniorhynchus larvae (Diptera: Culicides) by water currents in rice fields. Trop. Med. 21, 115126.Google Scholar
Roberts, D. W. and Yendol, (1973). “Use of fungi for microbial control of insects” In Microbial Control of Insects and Mites, pp. 1351362nd Ed. 1973 Academic Press Inc. (London) Ltd.Google Scholar
Sparrow, F. K. Jr (1960). Aquatic phycomycetes. 2nd ed. Michigan Press, Ann. Arbor, USA.CrossRefGoogle Scholar
Sweeney, A. W. (1978a) The effects of temperature on the mosquito pathogenic fungus Culicinomyces. Aust. J. Zool. 26, 4753.CrossRefGoogle Scholar
Sweeney, A. W. (1978b) The effects of salinity on the mosquito-pathogenic fungus, Culicinomyces. Aust. J. Zool. 26, 5559.CrossRefGoogle Scholar
Umphlett, C. J. and Huang, C. S. (1972) Experimental infection of mosquito larvae by a species of the aquatic fungus Lagenidium. J. Invert. Path. 20, 326331.Google Scholar