Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T04:15:49.193Z Has data issue: false hasContentIssue false

Mosquitocidal Bacillus thuringiensis from Nigerian soils

Published online by Cambridge University Press:  19 September 2011

Jason A. N. Obeta
Affiliation:
Department of Microbiology, University of Nigeria, Nsukka, Nigeria
Get access

Abstract

Out of 85 Bacillus thuringiensis strains isolated from Nigerian soils, 18 were larvicidal to Aedes aegypti, Culex quinquefasciatus and Anopheles gambiae. At 10−6 dilution of the final whole culture (FWC), the 11 most active strains, code-named GSC1, GSC3, GNA13, GNA14, OGL8, BUS4, BUS5, OBG1, OBG4, OBG8 and BAR3 produced mortality of 11.7–61.7% and 3.3–48.3% in Ae. aegypti and in C. quinquefasciatus fourth instars respectively. At 0.5 × 10−5 dilution of the FWC, the B.t. strains caused mortality in An. gambiae larvae ranging from 31.7 to 94.1%. All the 18 mosquitocidal isolates belonged to the subspecies israelensis, i.e. serotype 14. Microscopic examination revealed all the isolates to be typically Bacillus, with irregular or amorphous crystals of varying sizes.

Résumé

Sur 85 souches de Bacillus thuringiensis isolées des sols nigérians, 18 d'entre elles ont montré un pouvoir larvicide chez Aedes aegypti, Cidex quinquefasciatus et Anopheles gambiae. A une dilution de 10−6 de la culture pure, 11 souches les plus virulentes, codées GSC1, GSC3, GNA13, GNA14, OGL8, BUS4, BUS5, OBG1, OBG4, OBG8, et BAR3 ont provoqué au niveau des 4me stades larvaires, une mortalité de 11,7% à 61,7% chez Ae. aegypti, et de 3,3% à 48,3% chez C. quinquefasciatus. A une dilution de 0,5×10−5 de la culture pure, les souches B. thuringiensis ont induit une mortalité allant de 31,7% à 94,1% chez les larves de An. gambiae. Tous les 18 isolats appartenaient à la sous-espèce B.t. israelensis c'est-à-dire au sérotype 14. Les examens microscopiques ont révélé que tous les isolats étaient du groupe Bacillus typique, avec des cristaux irréguliers ou amorphes de tailles variées.

Type
Research Articles
Copyright
Copyright © ICIPE 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Hameed, A., Carlberg, G. and El-Tayeb, O. M. (1990) Studies on Bacillus thuringiensis H-14 strains isolated in Egypt—I. Screening for active strains. World J. Microbiol. & Biotechnol. 6, 299304.Google Scholar
Anonymous (1987) Report of an informal consultation on the detection, isolation, identification and ecology of biological agents of disease vectors. WHO Mimeograph Document, TDR/BCV/IC-CE/87.3.Google Scholar
Barjac, H. de (1990) Characterization and prospective view of Bacillus thuringiensis israelensis, pp. 1015. In Bacterial Control of Mosquitoes and Blackflies (Edited by de Barjac, H. and Sutherland, D. J.). Rutgers University Press, New Brunswick.CrossRefGoogle Scholar
Balaraman, K., Hoti, S. L. and Manonmani, L. M. (1981) An indigenous virulent strain of Bacillus thuringiensis highly pathogenic and specific to mosquitoes. Current Science 50, 199200.Google Scholar
Brownbridge, M. and Margalit, J. (1986) New Bacillus thuringiensis strains isolated in Israel are highly toxic to mosquito larvae. J. Invertebr. Pathol. 48, 216222.CrossRefGoogle ScholarPubMed
Chilcott, C. N. and Wigley, P. J. (1988) Technical note: An improved method for differential staining of Bacillus thuringiensis crystals. Lett. Appl. Microbiol. 7, 6770.CrossRefGoogle Scholar
Collins, C. H. and Lyne, P. M. (1970) In Microbiological Mcthods 3rd edn. pp. 164169. Butterworths, London.Google Scholar
Davidson, E. W. and Sweeny, A. W. (1983) Microbial control of vectors: A decade of progress. J. Med. Enlomol. 20, 235247.CrossRefGoogle ScholarPubMed
Goldberg, L. J. and Margalit, J. (1977) A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univitatus, Aedes aegypli and Culex pipiens. Mosq. News 37, 355358.Google Scholar
Majori, G. and Ali, A. (1984) Laboratory and field evaluations of industrial formulations of Bacillus thuringiensis serovar. israelensis against some mosquito species of Central Italy, J. Invertebr. Pathol. 43, 316323.CrossRefGoogle ScholarPubMed
Margalit, J. (1990) Discovery of Bacillus thuringiensis israelensis, pp. 39. In Bacterial Control of Mosquitoes and Blackflies (Edited by de, H. Barjac and Sutherland, D. J.). Rutgers University Press, New Brunswick.CrossRefGoogle Scholar
Martin, P. A. W., Haransky, E. B., Travers, R. S. and Reichelderfer, C. H. (1985) Rapid biochemical testing of large numbers of Bacillus thuringiensis isolates using agar dots. Bio Techniques 3, 386392.Google Scholar
Molloy, D. and Jamnback, H. (1981) Field evaluation of Bacillus thuringiensis var. israelensis as a black fly biocontrol agent and its effects on non-target stream insects, J. Econ. Entomol. 74, 314318.CrossRefGoogle Scholar
Mulligan III, F. S., Schaefer, C. H. and Wilder, W. H. (1980) Efficacy and persistence of Bacillus sphaericus and B. thuringiensis H-14 against mosquitoes under laboratory and field conditions, J. Econ. Entomol. 73, 684688.CrossRefGoogle Scholar
Norris, J. R. (1969) The ecology of serotype 4B of Bacillus thuringiensis. J. Appl. Bacteriol. 32, 261267.CrossRefGoogle ScholarPubMed
Obeta, J. A. N. (1989) Field evaluation of Bacillus thuringiensis var. israelensis produced on medium made from Nigerian agricultural products. Israel J. Entomol. 23, 247253.Google Scholar
Obeta, J. A. N., Zaritsky, A. and Barak, Z. (1995) Evaluation of Bacillus thuringiensis H-14 isolates from Nigerian soils for use in mosquito control. Insect Sci. Applic. 15, 433438.Google Scholar
Ohba, M. and Aizawa, K. (1989) Distribution of the four flagellar (H) antigenic subserotypes of Bacillus thuringiensis H serotype 3 in Japan. J. Appl. Bacteriol. 67, 505509.CrossRefGoogle Scholar
Padua, L. E., Ohba, M. and Aizawa, K. (1984) Isolation of a Bacillus thuringiensis strain (serotype 8a: 8b) highly and selectively toxic against mosquito larvae, J. Invertebr. Pathol. 44, 1217.Google Scholar
Priest, F. G. (1992) Biological control of mosquitoes and other biting flies by Bacillus sphaericus and Bacillus thuringiensis. J. Appl. Bacteriol. 72, 357369.CrossRefGoogle ScholarPubMed
Raun, E. S., Sutter, G. R. and Revelo, M. A. (1966) Ecological factors affecting the pathogenicity of Bacillus thuringiensis var. thuringiensis to the European corn borer and fall armyworm. J. Invertebr. Pathol. 8, 365375.CrossRefGoogle Scholar
Sutherland, D. J. (1990) The future of bacterial control of mosquito and blackfly larvae, pp. 335342. In Bacterial Control of Mosquitoes and Blackflies (Edited by de Barjac, H. and Sutherland, D. J.). Rutgers University Press, New Brunswick.Google Scholar
Travers, R. S., Martin, P. A. W. and Reichelderfer, C. F. (1987) Selective process for efficient isolation of soil Bacillus spp. Appl. Environ. Microbiol. 53, 12631266.CrossRefGoogle ScholarPubMed
Zhang, Y., Ku, Z., Chen, Z., Xu, B., Yuan, F., Chen, G., Zhong, T. and Ming, G. (1984) A new isolate of Bacillus thuringiensis possessing high toxicity towards mosquitoes. Acta Microbiol. Sinica 24, 320325.Google Scholar