Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-01T02:23:49.888Z Has data issue: false hasContentIssue false

Lepidoptera vectors of Pestalotiopsis fungal disease: first record in oil palm plantations from Colombia

Published online by Cambridge University Press:  27 September 2013

L.C. Martínez*
Affiliation:
Departamento de Entomologia, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, Campus Universitário Viçosa, Minas Gerais, CEP36570-000, Brazil
A. Plata-Rueda
Affiliation:
Departamento de Fitotecnia, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, Campus Universitário Viçosa, Minas Gerais, CEP36570-000, Brazil
*
Get access

Abstract

Pestalotiopsis is a disease that causes damage to the leaves of Elaeis guineensis Jacquin and defoliation in commercial plantations. Lepidoptera larvae are the main insects that spread the disease. The aim of this paper is to report for the first time the insects found in oil palm plantations in Colombia. Lepidoptera larvae were collected from cultures in the presence of Pestalotiopsis and were identified to species level. Severity and duration of the symptoms of Pestalotiopsis were evaluated from the damage caused by the insects of each species. Eighteen species of the families Dalceridae (one), Elachistidae (four), Limacodidae (eight), Megalopygidae (two), Nymphalidae (one), Psychidae (one) and Saturniidae (one) confirmed assistance and disease transmission. Increased severity of Pestalotiopsis damage was induced by Acharia hyperoche, Acraga ochracea, Durrantia arcanella, Euclea diversa, Euprosterna elaeasa and Stenoma impressella. The development of Pestalotiopsis on the leaves of E. guineensis and its symptoms were observed between 16.8 and 72.9 days. The damage caused by these insects on the leaves of E. guineensis was the main entrance of the virulent fungal spores. The results of this study contribute to the knowledge of Lepidoptera that attend and spread the Pestalotiopsis fungus on leaves in oil palm plantations. To our knowledge, no previous records of this disease on the plant are found in Colombia.

Type
Research Papers
Copyright
Copyright © icipe 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asmussen, C. B., Dransfield, J., Deickmann, V., Barfod, A. S., Pintaud, J.-C. and Baker, W. J. (2006) A new subfamily classification of the palm family (Arecaceae): evidence from plastid DNA. Botanical Journal of the Linnean Society 151, 1538.Google Scholar
Bjorholm, S. W., Svenning, J.-C., Skov, F. and Balslev, H. (2005) Environmental and spatial controls of palm (Arecaceae) species richness across the Americas. Global Ecology and Biogeography 14, 423429.Google Scholar
Bostock, R. M. (1999) Signal conflicts and synergies in induced resistance to multiple attackers. Physiological and Molecular Plant Pathology 55, 99109.Google Scholar
Chung, G. F., Sim, S. C., Hon, K. M. and Ramli, K. (1995) Monitoring and surveillance system for integrated pest management of leaf eating caterpillars in oil palm. The Planter 71, 253263.Google Scholar
Corley, R. H. V. (1983) Photosynthesis and age of oil palm leaves. Photosynthetica 17, 97100.Google Scholar
Darus, A. and Basri, M. W. (2000) Intensive IPM for management of oil palm pests. Oil Palm Bulletin 41, 114.Google Scholar
Das, R., Chutia, M., Das, K. and Jha, D. K. (2010) Factors affecting sporulation of Pestalotiopsis disseminata causing grey blight disease of Persea bombycina Kost., the primary food plant of muga silkworm. Crop Protection 29, 963968.Google Scholar
Deml, R. and Dettner, K. (2002) Morphology and classification of larval scoli of Saturniinae and Hemileucinae (Lepidoptera: Saturniidae). Journal of Zoological Systematics and Evolutionary Research 40, 8291.Google Scholar
Epstein, M. E. (1996) Revision and phylogeny of the limacodid-group families, with evolutionary studies on slug caterpillars (Lepidoptera: Zygaenoidea). Smithsonian Contributions to Zoology 582, 1102.Google Scholar
Escalante, M., Damas, D., Márquez, D., Gelvez, W., Chacón, H., Díaz, A. and Moreno, B. (2010) Diagnóstico y evaluación de Pestalotiopsis e insectos inductores, en plantaciones de palma aceitera al sur del lago de Maracaibo, Venezuela. Bioagro 22, 211216.Google Scholar
Folgarait, P. J., Marquis, R. J., Ingvarsson, P., Braker, H. E. and Arguedas, M. (1995) Patterns of attack by insect herbivores and a fungus on saplings in a tropical tree plantation. Environmental Entomology 24, 14871494.CrossRefGoogle Scholar
Freitas, A. V. L. and Brown, K. (2004) Phylogeny of the Nymphalidae (Lepidoptera). Systematic Biology 53, 363383.Google Scholar
Gehlot, P., Bohra, N. K. and Purohit, D. K. (2008) Endophytic mycoflora of inner bark of Prosopis cineraria – a key stone tree species of Indian desert. American-Eurasian Journal of Botany 1, 0104.Google Scholar
Genty, P. H., Desmier De Chenon, D. and Morin, J. R. (1978) Las plagas de la palma aceitera en América Latina. Oléagineux 33, 326420.Google Scholar
Genty, P., Garzon, M. A. and Garcia, R. (1983) Dégats et controle du complexe LeptopharsaPestalotiopsis chez le palmier á huile. Oléagineux 38, 291299.Google Scholar
Genty, P., Lopez, G. and Mariau, D. (1975) Degats de Pestalotiopsis induits par des attaques de Gargaphia en Colombie. Oléagineux 30, 199204.Google Scholar
Gitau, C. W., Gurr, G. M., Dewhurst, C. F., Fletcher, M. J. and Mitchell, A. (2009) Insect pests and insect-vectored diseases of palms. Australian Journal of Entomology 48, 328342.Google Scholar
Hatcher, P. E., Moore, J., Taylor, J. E., Tinney, G. W. and Paul, N. D. (2004) Phytohormones and plant–herbivore–pathogen interactions: integrating the molecular with the ecological. Ecology 85, 5969.Google Scholar
Henson, I. E. (1990) Photosynthesis and source–sink relationships in oil palm (Elaeis guineensis Jacq.). Transactions of the Malaysian Society of Plant Physiology 1, 165171.Google Scholar
Henson, I. E. (1991) Limitations to gas exchange, growth and yield of young oil palm by soil water supply and atmospheric humidity. Transactions of the Malaysian Society of Plant Physiology 2, 3945.Google Scholar
Howard, F. W., Moore, D., Giblin-Davis, R. M. and Abad, R. G. (2001) Insects on Palms. Cabi Publishing, Wallingford. 400 pp.CrossRefGoogle Scholar
Hunter, M. D. (2000) Mixed signals and cross-talk: interactions between plants, insect herbivores and plant pathogens. Agricultural and Forest Entomology 2, 155160.Google Scholar
Hyde, K. D. (1996) Fungi from palms. XXV. Pestalosphaeria elaeidis. Mycotaxon 57, 353357.Google Scholar
Hyde, K. D. and Fröhlich, J. (1995) Mycosphaerella palmicola associated with leaf spots of Cocos nucifera in Australia, Irian Jaya and Papua New Guinea. Mycological Research 99, 704706.Google Scholar
Jeewon, R., Liew, E. C. Y. and Hyde, K. D. (2004) Phylogenetic evaluation of species nomenclature of Pestalotiopsis in relation to host association. Fungal Diversity 17, 3955.Google Scholar
Jiménez, O. D. and Reyes, A. (1977) Estudio de una necrosis foliar que afecta varias plantaciones de palma de aceite (Elaeis guineensis Jacq.) en Colombia. Fitopatología Colombiana 6, 1532.Google Scholar
Jollands, P. (1983) Laboratory investigations on fungicides and biological agents to control three diseases of rubber and oil palms and their potential applications. Tropical Pest Management 29, 3338.Google Scholar
Kaila, L. (2004) Phylogeny of the superfamily Gelechioidea (Lepidoptera: Ditrysia): an exemplar approach. Cladistics 20, 303340.Google Scholar
Maharachchikumbura, Sajeewa S. N., Guo, L.-D., Chukeatirote, E., Bahkali, A. H. and Hyde, K. D. (2011) Pestalotiopsis – morphology, phylogeny, biochemistry and diversity. Fungal Diversity 50, 167187.Google Scholar
Mariau, D., Desmier de Chenon, R. and Sudharto, P. S. (1991) Oil palm insect pests and their enemies in South East Asia. Oléagineux 46, 400476.Google Scholar
Martínez, L. C., Hurtado, R. E., Araque, L. and Rincón, V. (2009) Avances de la campaña regional para el manejo de la información de insectos defoliadores en la zona central. Palmas 30, 5161.Google Scholar
Rostás, M. and Hilker, M. (2002) Asymmetric plant-mediated cross-effects between a herbivorous insect and a phytopathogenic fungus. Agricultural and Forest Entomology 4, 223231.Google Scholar
SAS (2002) The SAS System for Windows, Release 9.0. SAS Institute, Cary, NC.Google Scholar
Stout, M. J., Thaler, J. S. and Thomma, B. P. (2006) Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Annual Review of Entomology 51, 663689.Google Scholar
Stover, R. H. (1971) A proposed international scale for estimating intensity of Banana leaf spot (Mycosphaerella musicola Leach). Tropical Agriculture, Trinidad and Tobago 48, 185196.Google Scholar
Tukey, J. W. (1949) Comparing individual means in the analysis of variance. Biometrics 5, 99114.Google Scholar
Turner, P. D. (1981) Oil Palm Diseases and Disorders. Oxford University Press, Kuala Lumpur. 298 pp.Google Scholar
Zeddam, J.-L., Cruzado, J. A., Rodriguez, J. L., Ravallec, M. and Subilete, E. C. (2003) A cypovirus from the South American oil-palm pest Norape argyrrhorea and its potential as a microbial control agent. BioControl 48, 101112.Google Scholar