Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-08T05:35:43.617Z Has data issue: false hasContentIssue false

Influence of thyroxine on ovarian glycogen of Bombyx mori L. (Race Nistari) during ontogenesis

Published online by Cambridge University Press:  19 September 2011

Anathbandhu Chauduri
Affiliation:
Department of Animal Physiology, Bose Institute, Kankurgachi, Calcutta-700054, India
A. K. Medda
Affiliation:
Department of Animal Physiology, Bose Institute, Kankurgachi, Calcutta-700054, India
Get access

Abstract

Normal variations of ovarian glycogen content and the effect of different doses of thyroxine (T4) on this cellular constituent were investigated from 3rd day of fifth larval instar to adult emergence in Bombyx mori L. Ovarian glycogen remained higher during fifth larval stage with a peak on 7th day. At the end of 5th larval stage the glycogen content declined and this lower level continued upto 4th day of pupal age. Thereafter, this cellular constituent again sharply increased and reached a peak on pupal day 6, followed by a fall upto adult emergence. A single injection of different doses (0.5, 1, 2 and 5 μg/g body weight) of thyroxine, caused a significant decrease in glycogen content of ovary, during larval stage and an increase during pupal and adult stages of development with few exceptions. Thyroxine at the doses of 0.1 and 0.25 μg/g remained ineffective throughout the study period with an exception on day 2 after injection. The specific pattern of variation of the ovarian glycogen content as observed during normal stages of development was not altered by thyroxin though this hormone changed the level of glycogen. Thus, the results indicated that both glycogenolysis and glycogenesis occur in ovary after thyroxine treatment.

Résumé

Des variations normales de la teneur du glycogène ovarien et l'effet de différentes concentrations de thyroxine (T4) sur ce constituant cellulaire ont été étudiés du 3ème jour du 5ème stade larvaire de Bombyx mori L. jusqu'à émergence de l'adulte. Le niveau de glycogène ovarien était resté très élévé durante le 5ème stade larvaire, avec un pic au 7ème jour. A la fin du 5ème stade larvaire, la teneur en glycogène a brutalement decline et ce bas niveau a persisté jusqu'àu 4ème jour du stade pupal. Par le suite, ce constituant cellulaire a de nouveau brusquement remonté pour atteindre un pic au 6ème jour de la pupe, suivi de son déclin jusqu' à l'émergence de l'adulte.

Une injection unique de différentes concentrations de thyroxine (0.1, 1, 2 on 5 μg/g/poids corporel) a cause une reduction importante de la teneur en glycogène ovarien au cours du stade larvaire et son augmentation durant les stades pupal et adulte, avec quelques exceptions. La thyroxine aux concentrations de 0.1 et 0.25 μg/g est restée sans effet tout au long de la période d'étude, excepté au 2ème jour après injection. L'évolution particulière de la variation du glycogène ovarien telle qu'observée durant les différents stades de developpement n'a pas été influençée par la thyroxine, quoique cette hormone ait modifié le niveau glycogène. De ce fait, les résultats ont indiqué que la glycogénolyse et la glycogenese se poursuivent dans l'ovaire après traitement à la thyroxine.

Type
Research Articles
Copyright
Copyright © ICIPE 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Carrol, N. V., Longley, R. W. and Roe, J. H. (1956) The determination of glycogen in liver and muscle by use of anthrone reagent. J. Biol. Chem. 220, 583584.CrossRefGoogle Scholar
Chaudhuri, A. and Medda, A. K. (1982) Growth stimulating effect of thyroxine on female and male silkworms, Bombyx mori L. Ind. J. Physiol. Allied Sci. 36, 6269.Google Scholar
Chaudhuri, A. and Medda, A. K. (1985a) Effect of thyroxine on protein and nucleic acid contents of fat body of female silkworms, Bombyx mori during larval, pupal and adult stages of development. Environ. Ecol. 3, 514520.Google Scholar
Chaudhuri, A. and Medda, A. K. (1985b) Effect of thyroxine on the pattern of variation of protein, RNA and DNA contents of ovary of silkworm, Bombyx mori during metamorphosis. Environ. Ecol. 3, 418423.Google Scholar
Chaudhuri, A. and Medda, A. K. (1986) Changes in protein and nucleic acid contents of male gonad of silkworm, Bombyx mori L. at different developmental stages after thyroxine treatment. Proc. Nat. Acad. Sci. India. 56B, IV, 301306.Google Scholar
Chaudhuri, A. and Medda, A. K. (1987a) Thyroxine induced alterations in protein and nucleic acid contents of fat body of female silkworms during different developmental stages. Insect Sci. Applic. 8, 4248.Google Scholar
Chaudhuri, A. and Medda, A. K. (1987b) Effect of thyroxine on protein, RNA and DNA contents of ovary of silkworms, Bombyx mori L., at larval, pupal and adult stages of development and production of eggs. Zool. Zb. Anat. 115, 8590.Google Scholar
Chauduri, A. and Medda, A. K. (1992) Thyroxine-induced alterations in glycogen content of fat body of female silk worms, Bombyx mori L. (race Nistari), during larval, pupal and adult stages of development. Ann. Entomol. 10, 1721.Google Scholar
Chaudhuri, A., Das, S. and Medda, A. K. (1987a) Thyroxine induced alterations in haemolymph plasma protein content during developmental stages of female silkworms (Bombyx mori L.). Environ. Ecol. 5, 328332.Google Scholar
Chaudhuri, A., Das, S. and Medda, A. K. (1987b) Influence of thyroxine on the cholesterol content of haemolymph plasma of female and male silkworms, Bombyxmori L. (race Nistari) during larva, pupal and adult stages. Korean J. Biochem. 19, 7176.Google Scholar
Eberhardt, N. L., Appriletti, S. W. and Baxtar, J. D. (1980) The molecular biology of thyroid hormone action. In Biochemical Actions of Hormones (Edited by Litwack, G.), pp. 312394, Academic Press, New York.Google Scholar
Friedman, S. (1967) The control of trehalose synthesis in the blowfly, Phormia regina. J. Insect Physiol. 13, 397405.CrossRefGoogle ScholarPubMed
Friedman, S. (1970) Metabolism of carbohydrates in insects. In Chemical Zoology (Edited by Florkin, M. and Scheer, B. T.), No. 5. pp. 167197. Academic Press, New York.CrossRefGoogle Scholar
Goldsworthy, G. J. (1970) The action of hyperglycemic factors from the corpus cardiacum of Locusta migratoria on glycogen phosphorylase. Gen. Comp. Endocrinol. 14, 7885.CrossRefGoogle ScholarPubMed
Hasegawa, K. and Yamashita, O. (1965) Studies on the mode of action of the diapause hormone of the silkworm, Bombyx mori L.—VI. The target organ of the diapause hormone. J. Exp. Biol. 43, 271277.CrossRefGoogle Scholar
Majumdar, A. C. and Medda, A. K. (1975) Studies on the thyroxine and vitamin B12 induced changes in the life cycle of silkworms. Ind. J. Physiol. Allied Sci. 29, 113.Google Scholar
Medda, A. K., Ray, A. K., Dasgupta, A. K., Majumdar, A. C. and Dey, C. D. (1980) Thyroid hormone actions in magur fish and silkworms. In Thyroid Research VII. Proceedings of the Eighth International Thyroid Congress. Sydney-Australia (Edited by Stockigt, G. R. and Nagataki, S.), pp. 240243. Australian Academy of Science, Canberra.Google Scholar
Murphy, T. A. and Wyatt, G. R. (1965) The enzymes of glycogen and trehalose synthesis in silkworm fat body. J. Biol. Chem. 240, 15001508.CrossRefGoogle Scholar
Nemec, V. (1981) Effect of different hormonal conditions on saccharide metabolism in various organs of adult Pyrrhocoris apteres. Acta. Ent. Bohemoslov. 78, 145151.Google Scholar
Ono, S., Nagayama, H. and Simura, K. (1975) The occurrence and synthesis of female- and egg-specific proteins in the silkworm, Bombyx mori. Insect Biochem. 5, 319329.CrossRefGoogle Scholar
Ray, A. K., Bhattacharjee, S. S. and Medda, A. K. (1975) Histochemical studies on the effect of thyroid hormone on the glycogen content of liver of fish and amphibia. Ind. J. Physiol. Allied Sci. 29, 221226.Google Scholar
Sactor, B. (1975) Biochemistry of insect flight. I. utilization of fuels by muscle. In Biochemistry and Function (Edited by Candy, D. J. and Kilby, B. A.), pp. 188. Chapman and Hall, London.Google Scholar
Steele, J. E. (1963) The site of action of insect hyperglycemic hormone. Gen. Comp. Endocrinol. 3, 4652.CrossRefGoogle Scholar
Thyagaraja, B. S., Kelly, T. J., Masler, E. P. and Borkovec, A. B. (1991) Thyroxine-induced haemolymph protein and ecdysteroid increases in the silkworm, Bombyx mori: Effect on larval growth and silk production. J. Insect Physiol. 37, 153160.CrossRefGoogle Scholar
Van Marrewijk, W. J. A., Van Den Broek, A., Th., M. and Beenakkers, A. M. Th. (1980) Regulation of glycogenolysis in the locust fat body during flight. Insect Biochem. 10, 675679.CrossRefGoogle Scholar
Wiens, A. W. and Gilbert, L. I. (1967) Regulation of carbohydrate metabolism and utilization in Leucophaea maderae. J. Insect Physiol. 13, 779794.CrossRefGoogle ScholarPubMed
Wyatt, G. R. (1967) The biochemistry of sugars and polysaccharides in insects. Adv. Insect Physiol. 5, 287360.CrossRefGoogle Scholar
Yamashita, O. and Hasegawa, K. (196S) Studies on the mode of action of the diapause hormone in the silkworm, Bombyx mori L.—Effect of diapause hormone on the carbohydrate metabolism during the adult development. J. Sericult. Sci. Jap. 34, 235243.Google Scholar
Yamashita, O. and Hasegawa, K. (1969) Oocyte age and glycogen synthesis in pupal ovaries of the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae). App J. Entomol. Zool. 4, 203210.CrossRefGoogle Scholar
Yamashita, O. and Hasegawa, K. (1974) Mobilization of carbohydrates in tissues of female silkworms, Bombyx mori, during metamorphosis. J. Insect Physiol. 20, 17491760.CrossRefGoogle ScholarPubMed
Yamashita, O., Hasegawa, K. and Seki, M. (1972) Effect of the diapause hormone on trehalose activity in pupal ovaries of the silkworm, Bombyx mori L. Gen. Comp. Endocrinol. 18, 515523.CrossRefGoogle Scholar
Zaluska, H. (1959) Glycogen and chitin metabolism during development of the silkworm (Bombyx mori L.). Ada. Biol. Exp. 19, 339351.Google Scholar