Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T06:26:47.068Z Has data issue: false hasContentIssue false

Impact des cotonniers génétiquement modifiés sur la biodiversité de la faune entomologique: Le cas du coton Bt en Afrique du Sud

Published online by Cambridge University Press:  28 February 2007

Jean-Luc Hofs
Affiliation:
CIRAD, Département des Cultures Annuelles, Programme Coton, Montpellier, France
At Schoeman
Affiliation:
Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
Magdel Mellet
Affiliation:
Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
Maurice Vaissayre*
Affiliation:
CIRAD, Département des Cultures Annuelles, Programme Coton, Montpellier, France
Get access

Abstract

For the last three years, CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement, France) and the University of Pretoria led field research to evaluate the impact of transgenic Bt cotton, expressing the Cry1Ac toxin, on arthropod biodiversity in South Africa. The diversity and the density of insect populations were estimated at different crop development stages using traps, sweep-nets, and direct observations on the cotton plants. In untreated plots, the insect diversity in Bt cotton did not show major changes. The toxin was efficient in controlling one of the major bollworm species, Helicoverpa armigera (Hübner), and reduced the population density of specific larval parasitoids. Predators were present in comparable numbers in both cotton types, except for ladybirds. The toxin did not affect pollinators. In small-scale farming fields, where pesticides are still sprayed for controlling sucking insects, the introduction of Bt cotton did not help meet the expected reduction in insecticide use.

Type
Research Article
Copyright
Copyright © ICIPE 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Delrio, G., Verdinelli, M., Serra, G. (2004) Monitoring of pest and beneficial insect populations in summer-sown Bt maize. Bulletin OIL CROP 27, 4348.Google Scholar
Edge, J. M., Benedict, J. H., Carroll, J. P., Reding, H. K. (2001) Bollgard cotton: An assessment of global economic, environmental and social benefits. Journal of Cotton Science 5, 121136.Google Scholar
Green, W. M., De Billot, M. C., Joffe, T., Van Staden, L., Bennett-Nel, A. Du, Toit, C. L. N., Van der Westhuizen, L. (2003) Indigenous plants and weeds on the Makhathini Flats as refuge hosts to maintain bollworm population susceptibility to transgenic cotton. African Entomology 11, 2130.Google Scholar
Hilbeck, A., Baumgartner, M., Fried, P. M., Bigler, F. (1998) Effect of transgenic Bt corn-fed prey on mortality and development time of immature Chrysoperla carnea. Environmental Entomology 27, 480487.CrossRefGoogle Scholar
Höfte, H., Whiteley, H. R. (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological Reviews 53, 242255.CrossRefGoogle ScholarPubMed
Holtzhausen, W. D., Schoeman, A. S., et Mellet, M. A. (2004) Pollinators and nematodes associated with Bt and non-Bt cotton. African Plant Protection (sous presse).Google Scholar
James, C. (2003) Review: Global status of commercialised transgenic crops 2002, ISAAA Brief 27, ISAAA Ithaca, USA. 37 pp.Google Scholar
Kirsten, J., et Gouse, M. (2002) Bt cotton in South Africa: Adoption and impact on farm incomes amongst small- and large-scale farmers. ISB News Report 7. http://www.agbios.com/docroot/articles/02-284-001.pdfGoogle Scholar
Leonard, B. R., et Emfinger, K. (2002) Insects in low spray environments and modified cotton ecosystems. In Proceedings Beltwide Cotton Conferences. January 8–12. Atlanta, GA. CD-Rom, National Cotton Council, USA.Google Scholar
Lundgren, J. G., Razzak, A. A., Wiedenmann, R. N. (2004) Population response and feeding behaviors of the predators Coleomegilla maculata and Harmonia axyridis during anthesis in an Illinois cornfield. Environmental Entomology 33, 958963.CrossRefGoogle Scholar
May, O. L., Bourland, F. M., Nichols, R. L. (2003) Challenges in testing transgenic and non-transgenic cotton cultivars. Crop Science 43, 15941601.CrossRefGoogle Scholar
Mellet, M. A., Schoeman, A. S., Broodryk, S. W., Hofs, J.-L. (2004) Bollworm ( Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) occurrences in Bt- and non-Bt cotton fields, Marble Hall, Mpumalanga, South Africa. African Entomology 12, 107115.Google Scholar
Men, X.-M., Ge, F., Liu, X.-H., Yardim, E. N. (2003) Diversity of arthropod communities in transgenic Bt cotton and non-transgenic cotton agro-ecosystems. Environmental Entomology 32, 270275.CrossRefGoogle Scholar
Morris, E. J., Koch, M. (2002) Biosafety of genetically modified crops: An African perspective. AgBiotechNet 4, 16.Google Scholar
Oberhauser, K. S., Rivers, E. R. L. (2003) Monarch butterfly larvae and Bt maize pollen: A review of ecological risk assessment for non-target species. AgBiotechNet 5, 17.Google Scholar
Olsen, K. M., Daly, J. C. (2000) Plant-toxin interactions in transgenic Bt cotton and their effect on mortality of Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Economic Entomology 93, 12931299.CrossRefGoogle ScholarPubMed
Orr, D. B., Landis, D. L. (1997) Oviposition of European corn borer and impact of natural enemy populations in transgenic versus isogenic corn. Journal of Economic Entomology 90, 905909.CrossRefGoogle Scholar
Pannetier, C., Giband, M., Couzi, P. Le, Tan, V., Mazier, M., Tourneur, J., Hau, B. (1997) Introduction of new traits into cotton through genetic engineering: Insect resistance. Euphytica 96, 163166.CrossRefGoogle Scholar
Pearson, E. O. (1958). The Insect Pests of Cotton in Tropical Africa. Empire Cotton Growing Review & Commonwealth Institute of Entomology, London. 355 pp.Google Scholar
Pessel, F. D., Lecomte, J., Gouyon, P.-H. (1998) Plantes transgéniques: De l'estimation à la gestion des risques. Cahiers Agriculture 7, 536541.Google Scholar
Pilcher, C. D., Obrycki, J. J., Rice, M. E., Lewis, L. C. (1997) Preimaginal development, survival and field abundance of insect predators on transgenic Bt corn. Environmental Entomology 26, 446454.CrossRefGoogle Scholar
Scholtz, C. H., Holm, E. (1985) Insects of Southern Africa. University of Pretoria. Butterworths Publishers (Pty) Ltd.Google Scholar
Sims, S. R. (1995) Bacillus thuringiensis Cry1Ac protein expressed in transgenic cotton: Effect on beneficial and other non-target insects. Southwestern Entomologist 20, 493500.Google Scholar
Sisterson, M. S., Biggs, R. W., Olson, C., Carrière, Y., Dennehy, T. J., Tabashnik, B. E. (2004) Arthropod abundance and diversity in Bt and non-Bt cotton fields. Environmental Entomology 33, 921929.CrossRefGoogle Scholar
SPSS Science (1998) Systat 8.0 Statistics. SPSS Inc., Chicago. 1086 pp.Google Scholar
Van Jaarsveld, M. J., Basson, N. C. J., Marais, P. (1998) Synthetic pyrethroid resistance in field strains of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in South Africa. African Plant Protection 4, 1518.Google Scholar
Van Jaarsveld, M. J. and Pretorius, M. J. (2001). Transgenic cotton: Efficacy against bollworm in South Africa. Proceedings 13th Entomological Congress of the Entomological Society of Southern Africa. Pietermaritzburg, South Africa. Poster 108.Google Scholar
Wolfenbarger, L. L., Phifer, P. R. (2000) The ecological risks and benefits of genetically engineered plants. Science 290, 20882093.CrossRefGoogle ScholarPubMed
Wu, K.-M., Peng, Y.-F., Jia, S.-R. (2003) What have we learnt on impacts of Bt cotton on non-target organisms in China?. AgBiotechNet 5, 14.Google Scholar
Zhang, G.-F., Wan, F.-H., Guo, J.-Y., Hou, M.-L. (2004) Expression of Bt toxin in transgenic Bt cotton and its transmission through pests Helicoverpa armigera and Aphis gossypii to natural enemy Propylea japonica in cotton plots. Acta Entomologica Sinica 47, 334341.Google Scholar
Zipf, A. E., Rajasekaran, K. (2003) Ecological impact of Bt cotton. Journal of New Seeds 5, 115135.CrossRefGoogle Scholar