Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T04:55:54.518Z Has data issue: false hasContentIssue false

Genetic variation in wild Anopheles arabiensis Patton of Mwea Irrigation Scheme, Kenya

Published online by Cambridge University Press:  19 September 2011

Titus K. Mukiama
Affiliation:
Department of Botany, University of Nairobi P.O. Box 30197, Nairobi, Kenya
Get access

Abstract

Electrophoretic variation was determined at eight enzyme loci in Anopheles arabiensis from four villages in Mwea Irrigation Scheme, Kenya. Seven loci had polymorphic alíeles of which at least two were common. Pooled allele frequencies at the Pgm, β-Had and Odh loci were in Hardy-Weinberg equilibrium, while those at the Ao, Idh, Adh, Est-1 and 6-Pgd loci showed significant deviations. The frequency of heterozygotes at the Adh, Est-1 and 6-Pgd loci was less than expected, while at the Ao locus, there was an excess. A 2 × 4 contingency χ2-test for each of the loci not in Hardy-Weinberg equilibrium indicated an association between the respective gene frequencies and the villages. The suggested explanation for these observations is that each village constitutes a distinct population, and that the pooled data introduced the Wahlund effect. Allele frequencies at individual loci per village population are most likely at Hardy-Weinberg equilibrium. Larger samples per village need to be examined to facilitate a goodness of fit χ2-test between observed and expected frequencies.

Résumé

La variation électrophorétique était déterminée pour huit bandes enzymatiques dans Anophèles arabiensis provenant de quatre villages de la région irriguée de Mwea au Kenya. Sept bandes avaient des allèles polymorphiques dont au moins deux étaient communs. Les fréquences ressemblées des allèles pour les bandes Pgm, β-Had et Odh étaient en équilibre de Hardy-Weinberg, alors que celles de Ao, Idh, Adh, Est-1 et 6-Pgd montraient des déviations significatives. La fréquence des hétérozygotes pour les bandes de Adh, Est-1 et 6-Pgd était la moins attendue alors que pour la bande Ao, il y avait un excès. Une contingeance 2 × 4 du test χ2 pour chaque bande non en équilibre de Hardy-Weinberg indiquait une association entre les fréquences respectives de genes et les villages. L'explication suggérée pour ces observations est que chaque village constitue une population distincte et que les données rassemblées introduisaient l'effet Wahlund. Les fréquences des allèles à une bande individuelle par population de village étaient plus vraisemblablement en équilibre de Hardy-Weinberg. Un plus grand nombre d'échantillons par village est nécessaire pour être en accord avec le test χ2 entre les fréquences observées et celles attendues.

Type
Research Articles
Copyright
Copyright © ICIPE 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ayala, F. J. and Powell, J. R. (1972) Allozymes as characters of sibling species of Drosophila. Proc. Nail. Acad. Sci., U.S.A. 69, 10941096.CrossRefGoogle ScholarPubMed
Ayala, F. J., Powell, J. R., Tracey, M. L., Mourao, C. A. and Peres-Salas, S. (1972) Enzyme variability In Drosophila willistoni group. 4, Genie variation in natural populations of Drosophila willistoni. Genetics 70, 113139.CrossRefGoogle Scholar
Berlocher, S. H. (1980) An electrophoretic key for distinguishing species of the genus Rhagoletis (Diptera: Tephritidae) as larvae, pupae or adults. Ann. ent. Soc. Am. 73, 131137.CrossRefGoogle Scholar
Berlocher, S. H. (1984) Insect molecular systematics. A. Rev. Ent. 29, 403–33.CrossRefGoogle Scholar
Bullini, L. and Coluzzi, M. (1978) Applied and Theoretical significance of electrophoretic studies in mosquitoes (Diptera: Culicidae). Parassitologia, Rome 20, 721.Google ScholarPubMed
Coluzzi, M. and Bullini, L. (1971) Enzyme variants as markers in the study of pre-copulatory isolating mechanisms. Nature, Lond. 231, 455456.CrossRefGoogle Scholar
Coluzzi, M. and Sabatini, A. (1967) Cytogenetic observations on species A and B of the Anopheles gambiae complex. Parassitologia 9, 7388.Google Scholar
Coluzzi, M. and Sabatini, A. (1968) Cytogenetic observations on species C of the Anopheles gambiae complex. Parassitologia 10, 155156.Google Scholar
Coluzzi, M. and Sabatini, A. (1969) Cytogenetic observations on the saltwater species Anopheles merus and Anopheles tnelas of the gambiae complex. Parassitologia 11, 177187.Google Scholar
Coluzzi, M., Sabatini, A., Petrarca, V. and Di Deco, M. A. (1979) Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans. R. Soc. Trop. Med. Hyg. 73, 483497.CrossRefGoogle ScholarPubMed
Corsaro, B. G. and Munstermann, C. E. (1984) Identification by electrophoresis of Culex adults. (Diptera: Culicidae) in light-trap samples. J. med. Ent. 21, 648655.CrossRefGoogle ScholarPubMed
Davidson, G. (1964) The five mating-types in the Anopheles gambiae complex. Riv. Malar. 43, 167170.Google ScholarPubMed
Di Deco, M. A., Cancrini, G., Coluzzi, M., Bullini, A. P. B., Cianchi, R. and Bullini, L. (1978) Linkage studies between chromosome inversions and enzyme loci in the mosquito Anopheles stephensi. The J. Hered. 40, 457458.CrossRefGoogle Scholar
Green, C. A. (1972) Cytological maps for the practical identification of females of the three freshwater species of the Anopheles gambiae complex. Ann. Trop. Med. Parasit. 66, 143147.CrossRefGoogle ScholarPubMed
Haridi, A. M. (1974) Linkage studies on DDT and dieldrin resistance in species A and species B of the Anopheles gambiae complex. Bull. Wld. Hllh. Org. 50, 441448.Google ScholarPubMed
Highton, R. B., Bryan, J. H., Boreham, P. F. L. and Chandler, J. A. (1979) Studies on the sibling species Anopheles gambiae Giles and Anopheles arabiensis Patton (Diptera: Culicidae) in the Kisumu area, Kenya. Bull. ent. Res. 69, 4353.CrossRefGoogle Scholar
Iqbal, M. P., Sakai, R. K. and Baker, R. H. (1973) The genetics of an alcohol dehydrogenase in the mosquito Anopheles stephensi. J. med. Ent. 10, 309311.CrossRefGoogle ScholarPubMed
Lewontin, R. C. and Hubby, J. L. (1966) A molecular approach to the study of genie hetorozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54, 595609.CrossRefGoogle Scholar
Mahon, R. J., Green, C. A. and Hunt, R. H. (1976) Diagnostic allozymes for routine identification of adults of Anopheles gambiae complex (Diptera: Culicidae). Bull. ent. Res. 66, 2531.CrossRefGoogle Scholar
May, B., Bauer, R. L., Vadas, R. L. and Granett, J. (1977) Biochemical genetic variation in the Family Simuliidae: Electrophoretic identification of the human biter in the isomorphic Simulium jenningsi group. Ann. ent. Soc. Am. 70, 637640.CrossRefGoogle Scholar
Miles, S. J. (1976) Taxonomic significance of assortative mating in a mixed field population of Culex pipiens australicus, C.P. quinquefasciatus and C. globocoxitus. Syst. Ent. 1, 263270.Google Scholar
Miles, S. J. (1978) Enzyme variation in the Anopheles gambiae Giles group of species (Diptera: Culicidae). Bull, enl. Res. 68, 8596.CrossRefGoogle Scholar
Miles, S. J. (1979) A biochemical key to adult members of the Anopheles gambiae group of species (Diptera: Culicidae). J. med. Ent. 15, 297299.CrossRefGoogle ScholarPubMed
Miles, S. J. and Paterson, H. E. (1979) Protein variation and systematics in the Culex pipiens group of species. Mosq. Syst. 11, 187202.Google Scholar
Munstermann, L. E. (1980) Distinguishing geographic strains of the Aedes atropalpus group (Diptera: Culicidae) by an analysis of enzyme variation. Ann. ent. Soc. Am. 73, 699704.CrossRefGoogle Scholar
Narang, S. and Seawright, J. A. (1982) Linkage relationships and genetic mapping In Culex and Anopheles. In “Proc. Recent Developments in Genetics of Insect Disease Vectorsy” (Edited by Steiner, W. W. M., Tabachnick, W. J., Rai, K. S. and Narang, S.) pp. 231289. Stipes Publ. Co. Champaign, IL.Google Scholar
Narang, S. and Seawright, J. A. (1983) Genetic and physicochemical studies of β-hydroxyacid dehydrogenase in An. albimanus. Biochem. Genet. 21, 885893.CrossRefGoogle Scholar
Narang, S., Seawright, J. A. and Kitzmiller, J. B. (1981) Linkage relationships and assignment of esterase-4 and esterase-8 loci to chromosome 3 in Anopheles albimanus. The J. Hered. 72, 157160.CrossRefGoogle ScholarPubMed
Narang, S., Seawright, J. A., Mukiama, T. K. and Willis, N. L. (1983) Assignment of 6-phosphogluconate dehydrogenase and glucose oxidase to chromosome 2 of Anopheles albimanus. Can. J. Genet. Cytol. 25, 567572.CrossRefGoogle Scholar
Pashley, D. P. and Rai, K. S. (1983) Comparison of allozyme and morphological relationships in some Aedes (Stegomyia) mosquitoes (Diptera: Culicidae). Ann. ent. Soc. Am. 76, 388394.CrossRefGoogle Scholar
Saul, S. H., Grimstad, P. R. and Craig, G. B. Jr (1977) Identification of Culex species by electrophoresis. Amer. J. Trop. Med. Hyg. 26, 10091012.CrossRefGoogle ScholarPubMed
Seawright, J. A., Kaiser, P. E. and Narang, S. (1981) Chromosome manipulation studies of Anopheles albimanus for genetic control. In Cytogenetics and Genetics of Vectors. (Editors Pal, R.; Kitzmiller, J. B. and Kanda, T.), pp. 249261. Elsevier Biomedical, NY.Google Scholar
Steiner, W. W. M. and Joslyn, D. J. (1979) Electrophoresis techniques for the genetic study of mosquitoes. Mosq. News. 39, 3554.Google Scholar
Wagner, R. P. and Selander, R. K. (1974) Isozymes in insects and their significance. A. Rev. Ent. 19, 117138.CrossRefGoogle Scholar
White, G. B. (1974) Anopheles gambiae complex and disease transmission in Africa. Trans. R. Soc. trop. Med. Hyg. 68, 278301.CrossRefGoogle ScholarPubMed
White, G. B. (1985) Anopheles gambiae, sp. n., a malaria vector in the Semliki Valley, Uganda, and its relationships with other sibling species of the An. gambiae complex (Diptera: Culicidae). Syst. Ent. 10, 510522.CrossRefGoogle Scholar
White, G. B., Magayuka, S. A. and Boreham, P. F. L. (1972) Comparative studies on sibling species of the Anopheles gambiae Giles complex (Diptera: Culicidae): Bionomics and vectorial activity of species A and species B at Segera, Tanzania. Bull. ent. Res. 62, 295317.CrossRefGoogle Scholar