Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T00:39:37.182Z Has data issue: false hasContentIssue false

Genetic variability in Indian populations of banana corm weevil [Cosmopolites sordidus (Coleoptera: Curculionidae)] assessed by RAPDs and AFLPs

Published online by Cambridge University Press:  17 August 2017

Sweta Kumari U. Yadav
Affiliation:
Division of Biochemical Sciences, National Chemical Laboratory, Pune, 411008, India
Jyotsna Singh
Affiliation:
Division of Biochemical Sciences, National Chemical Laboratory, Pune, 411008, India
B. Padmanaban
Affiliation:
Department of Crop Protection (Entomology), National Research Centre for Banana, Thogamalai Road, Thayanur (PO), Tiruchirapalli, 620102, Tamil Nadu, India
Lalitha Sunil Kumar*
Affiliation:
Division of Biochemical Sciences, National Chemical Laboratory, Pune, 411008, India
Get access

Abstract

Cosmopolites sordidus (Germar), commonly known as banana corm weevil, is an important economic pest in Asia that can cause severe yield loss depending upon the stage at which infestation occurs. In spite of its economic importance, little is known about the population structure of this pest in India. Random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) were used to characterize the population genetic structure of C. sordidus collected from five hot spot locations in India. Nineteen RAPD primers and five selective AFLP primer combinations generated 147 and 304 amplification products, respectively. UPGMA dendrograms generated with both marker systems failed to reveal populations clustered based on geographic distance, which was confirmed by the Mantel test, which did not show a strong correlation between genetic distance and geographic distance. Values of indices of genetic identity showed that the populations were closely related. Though the gene flow estimate (Nm) between the populations was 0.469, suggesting restricted gene flow, the populations are not genetically distinct. These observations suggest that the range expansion of this banana pest in India has taken place through transport of infested corms and plant material, resulting in genetically close populations that are geographically distinct. These results provide important information on the population structure of this pest in India, which will aid in designing suitable strategies for its control and management, especially with respect to insecticide resistance.

Type
Research Paper
Copyright
Copyright © icipe 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. A., Churchill, G. A., Autrique, J. E., Tanksley, S. D. and Sorrells, M. E. (1993) Optimizing parental selection for genetic linkage maps. Genome 36, 181186.Google Scholar
Archak, S., Gaikwad, A. B., Gautam, D., Rao, E. V. V. B., Swamy, K. R. M. and Karihaloo, J. L. (2003) Comparative assessment of DNA fingerprinting techniques (RAPD, ISSR and AFLP) for genetic analysis of cashew (Anacardium occidentale L.) accessions of India. Genome 46, 362369.Google Scholar
Aylor, D. E. and Irwin, M. E. (1999) Aerial dispersal of pests and pathogens: implications for integrated pest management. Agricultural and Forest Meteorology 97, 233234.Google Scholar
Behura, S. K. (2006) Molecular marker systems in insects: current trends and future avenues. Molecular Ecology 15, 30873113. doi:10.1111/j.1365-294X.2006.03014.x.CrossRefGoogle ScholarPubMed
Black, W. C. (1993) PCR with arbitrary primers: approach with care. Insect Molecular Biology 2, 16. doi:10.1111/j.1365-2583.1993.tb00118.x CrossRefGoogle ScholarPubMed
Byrne, D. N. (1999) Migration and dispersal by the sweet potato whitefly, Bemisia tabaci . Agricultural and Forest Meteorology 97, 309316.Google Scholar
Castiglioni, L. and de Campos Bicudo, H. E. (2005) Molecular characterization and relatedness of Haematobia irritans (horn fly) populations, by RAPD-PCR. Genetica 124, 1121.Google Scholar
Cervera, M. T., Cabezas, J. A., Simón, B., Martinez-Zapater, J. M., Beitia, F. J. and Cenis, J. L. (2000) Genetic relationships among biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae) based on AFLP analysis. Bulletin of Entomological Research 90, 391396. doi: 10.1017/S0007485300000523.Google Scholar
Clark, P. L., Molina-Ochoa, J., Martinelli, S., Skoda, S. R., Isenhour, D. J., Lee, D. J., Krumm, J. T. and Foster, J. E. (2007) Population variation of the fall armyworm, Spodoptera frugiperda, in the Western Hemisphere. Journal of Insect Science 7, 110.CrossRefGoogle ScholarPubMed
Collins, P. J., Treverrow, N. L. and Lambkin, T. M. (1991) Organophosphorous insecticide resistance and its management in the banana weevil borer, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae), in Australia. Crop Protection 10, 215221.Google Scholar
de Graaf, J. (2006) Integrated pest management of the banana weevil, Cosmopolites sordidus (Germar), in South Africa. PhD thesis (Entomology). University of Pretoria, Pretoria.Google Scholar
Dellaporta, S. L., Wood, J. and Hicks, J. B. (1983) A plant DNA minipreparation, version II. Plant Molecular Biology Reporter 1, 1921.Google Scholar
Dvorak, V., Votypka, J., Aytekin, A. M., Alten, B. and Volf, P. (2011) Intraspecific variability of natural populations of Phlebotomus sergenti, the main vector of Leishmania tropica . Journal of Vector Ecology 36 (Supplement 1), S49S57. doi: 10.1111/j.1948-7134.2011.00111.x.Google Scholar
Gadelhak, G. G. and Enan, M. R. (2005) Genetic diversity among populations of red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae), determined by random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). International Journal of Agriculture & Biology 7, 395399.Google Scholar
Godonou, I., Green, K. R., Oduro, K. A., Lomer, C. J. and Afreh-Nuamah, K. (2000) Field evaluation of selected formulations of Beauveria bassiana for the management of the banana weevil (Cosmopolites sordidus) on plantain (Musa sp., AAB group). Biocontrol Science and Technology 10, 779788.Google Scholar
Gold, C. S. and Messiaen, S. (2000) The banana weevil Cosmopolites sordidus. Musa Pest Fact Sheet No. 4. INIBAP, France. Available at: http://bioversityinternational.org/uploads/tx_news/The_banana_weevil_Cosmopolites_sordidus_696.pdf.Google Scholar
Gold, C. S., Bagabe, M. I. and Sendege, R. (1999a) Banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae): tests for suspected resistance to carbofuran and dieldrin in the Masaka District, Uganda. African Entomology 7, 189196.Google Scholar
Gold, C. S., Kagezi, G. H., Night, G. and Ragama, P. E. (2004) The effects of banana weevil, Cosmopolites sordidus, damage on highland banana growth, yield and stand duration in Uganda. Annals of Applied Biology 145, 263269.Google Scholar
Gold, C. S., Rukazambuga, N. D. T. M., Karamura, E. B., Nemeye, P. and Night, G. (1999b) Recent advances in banana weevil biology, population dynamics and pest status with emphasis on East Africa, pp. 3350. In Mobilizing IPM for Sustainable Banana Production in Africa. (edited by Frison, E., Gold, C. S., Karamura, E. B. and Sikora, R. A.). INIBAP, Montpellier, France. Available at: http://pdf.usaid.gov/pdf_docs/PNACK080.pdf.Google Scholar
Gold, C. S., Pena, J. E. and Karamura, E. B. (2001) Biology and integrated pest management for the banana weevil Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae). Integrated Pest Management Reviews 6, 79155.Google Scholar
Guasmi, F., Elfalleh, W., Hannachi, H., Fères, K., Touil, L., Marzougui, N., Triki, T. and Ferchichi, A. (2012) The use of ISSR and RAPD markers for genetic diversity among south Tunisian barley. ISRN Agronomy 2012, Article ID 952196, 10 pp.Google Scholar
Karam, N., Guglielmino, C. R., Bertin, S., Gomulski, L. M., Bonomi, A., Baldacchino, F., Simeone, V. and Malacrida, A. R. (2008) RAPD analysis in the parasitoid wasp Psyttalia concolor reveals Mediterranean population structure and provides SCAR markers. Biological Control 47, 2227.CrossRefGoogle Scholar
Katiyar, S. K., Chandel, G., Tan, Y., Zhang, Y., Huang, B., Nugaliyadde, L., Fernando, K., Bentur, J. S., Inthavong, S., Constantino, S. and Bennett, J. (2000) Biodiversity of Asian rice gall midge (Orseolia oryzae Wood Mason) from five countries examined by AFLP analysis. Genome 43, 322332.Google Scholar
Kazachkova, N., Meijer, J. and Ekbom, B. (2008) Genetic diversity in European pollen beetle, Meligethes aeneus (Coleoptera: Nitidulidae), populations assessed using AFLP analysis. European Journal of Entomology 105, 807814.Google Scholar
Kiggundu, A., Pillay, M., Viljoen, A., Gold, C., Tushemereirwe, W. and Kunert, K. (2003) Enhancing banana weevil (Cosmopolites sordidus) resistance by plant genetic modification: A perspective. African Journal of Biotechnology 2, 563569.Google Scholar
Kim, K. S. and Sappington, T. W. (2004) Genetic structuring of boll weevil populations in the US based on RAPD markers. Insect Molecular Biology 13, 293303.CrossRefGoogle ScholarPubMed
Krumm, J. T., Hunt, T. E., Skoda, S. R., Hein, G. L., Lee, D. J., Clark, P. L. and Foster, J. E. (2008) Genetic variability of the European corn borer, Ostrinia nubilalis, suggests gene flow between populations in the Midwestern United States. Journal of Insect Science 8, 72.Google Scholar
Kumar, L. S., Sawant, A. S., Gupta, V. S. and Ranjekar, P. K. (2001a) Comparative analysis of genetic diversity among Indian populations of Scirpophaga incertulas by ISSR-PCR and RAPD-PCR. Biochemical Genetics 39, 297309.Google Scholar
Kumar, L. S., Sawant, A. S., Gupta, V. S. and Ranjekar, P. K. (2001b) Genetic variation in Indian populations of Scirpophaga incertulas as revealed by RAPD-PCR analysis. Biochemical Genetics 39, 4357.Google Scholar
Labbe, P., Lenormand, T. and Raymond, M. (2005) On the worldwide spread of an insecticide resistance gene: a role for local selection. Journal of Evolutionary Biology 18, 14711484.Google Scholar
Lall, G. K., Darby, A. C., Nystedt, B., MacLeod, E. T., Bishop, R. P. and Welburn, S. C. (2010) Amplified fragment length polymorphism (AFLP) analysis of closely related wild and captive tsetse fly (Glossina morsitans morsitans) populations. Parasites & Vectors 3, 47. doi: 10.1186/1756-3305-3-47.Google Scholar
Lopes-da-Silva, M. and Vieira, L. G. E. (2007) Analysis of the genetic diversity in Metopolophium dirhodum (Walker) (Hemiptera, Aphididae) by RAPD markers. Revista Brasileira de Entomologia 51, 5457.CrossRefGoogle Scholar
Loxdale, H. D., Hardie, J., Halbert, S., Foottit, R., Kidd, N. A. C. and Carter, C. I. (1993) The relative importance of short- and long-range movement of flying aphids. Biological Reviews 68, 291311. doi:10.1111/j.1469-185X.1993.tb00998.x.Google Scholar
Magaña, C., Beroiz Ramirez, B., Hernández-Crespo, P., Montes de Oca, M., Carnero, A., Ortego, F. and Casteñera, P. (2007) Population structure of the banana weevil, an introduced pest in the Canary Islands, studied by RAPD analysis. Bulletin of Entomological Research 97, 585590.Google Scholar
Mantel, N. (1967) The detection of disease clustering and a generalized regression approach. Cancer Research 27, 209220.Google Scholar
Martins, W. F. S., Ayres, C. F. J. and Lucena, W. A. (2007) Genetic diversity of Brazilian natural populations of Anthonomus grandis Boheman (Coleoptera, Curculionidae), the major cotton pest in the New World. Genetics and Molecular Research 6, 2332.Google Scholar
McDermott, J. M. and McDonald, B. A. (1993) Gene flow in plant pathosystems. Annual Review of Phytopathology 31, 353373.Google Scholar
McMichael, M. and Prowell, D. P. (1999) Differences in amplified fragment-length polymorphisms in fall armyworm (Lepidoptera: Noctuidae) host strains. Annals of the Entomological Society of America 92, 175181.Google Scholar
Nahrung, H. F. and Allen, G. R. (2003) Geographical variation, population structure and gene flow between populations of Chrysophtharta agricola (Coleoptera: Chrysomelidae), a pest of Australian eucalypt plantations. Bulletin of Entomological Research 93,137144. doi: 10.1079/BER2003224.Google Scholar
Nei, M. (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences USA 70, 33213323.CrossRefGoogle ScholarPubMed
Nei, M. (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583590.Google Scholar
Nevo, E. (1978) Genetic variation in natural populations: patterns and theory. Theoretical Population Biology 13, 121177.Google Scholar
Ochieng, V. O. (2001) Genetic diversity in banana weevil Cosmopolites sordidus populations in banana growing regions of the world. PhD thesis, University of Nairobi, Kenya.Google Scholar
Ochieng, V. O., Osir, E. O. and Mulaa, F. J. (2002) Genetic biodiversity in banana weevil Cosmopolites sordidus populations in banana growing regions of the world. In Proceedings of the 7th Biochemical Society of Kenya Annual Scientific Conference, Biochemical Society of Kenya, Nairobi.Google Scholar
Ostmark, H. E. (1974) Economic insect pests of bananas. Annual Review of Entomology 19, 161176.Google Scholar
Padmanaban, B., Sundararaju, P., Velayudhan, K. C. and Sathiamoorthy, S. (2001) Evaluation of Musa Germplasm against banana weevil borers. InfoMusa 10(1), 2628.Google Scholar
Peakall, R. O. D. and Smouse, P. E. (2006) genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288295.CrossRefGoogle Scholar
Pena, J. E, Duncan, R. and Martin, R. (1993) Biological control of Cosmopolites sordidus in Florida, pp. 124139. In Biological and Integrated Control of Highland Banana and Plantain Pests and Diseases: Proceedings of a Research Coordination Meeting (edited by Gold, C. S. and Gemmill, B.). IITA, Cotonou, Benin.Google Scholar
Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S. and Rafalski, A. (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding 2, 225238. doi:10.1007/BF00564200.Google Scholar
Prevost, A. and Wilkinson, M. J. (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics 98, 107112. doi:10.1007/s001220051046.Google Scholar
Ranjan, S. K., Basu Mallick, C., Saha, D., Vidyarthi, A. S. and Ramani, R. (2011) Genetic variation among species, races, forms and inbred lines of lac insects belonging to the genus Kerria (Homoptera, Tachardiidae). Genetics and Molecular Biology 34, 511519.Google Scholar
Reineke, A., Karlovsky, P. and Zebitz, C. P. W. (1999) Amplified fragment length polymorphism analysis of different geographic populations of gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae). Bulletin of Entomological Research 89, 7988.Google Scholar
Reyes, A. and Ochando, M. D. (1998) Use of molecular markers for detecting the geographical origin of Ceratitis capitata (Diptera: Tephritidae) populations. Annals of the Entomological Society of America 91, 222227.Google Scholar
Roush, R. T. and Daly, J. C. (1990) The role of population genetics in resistance research and management, pp. 97152. In Pesticide Resistance in Arthropods (edited by Roush, R. T. and Tabashnik, B. E.). Chapman & Hall Inc. New York.Google Scholar
Rukazambuga, N. D. T. M., Gold, C. S. and Gowen, S. R. (1998) Yield loss in East African highland banana (Musa spp., AAA-EA group) caused by the banana weevil, Cosmopolites sordidus Germar. Crop Protection 17, 581589.Google Scholar
Sidorenko, A. P. and Berezovska, O. P. (2002) Genetic structure of populations of the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Russian Journal of Genetics 38, 12561261. doi:10.1023/A:1021194927020.Google Scholar
Suinaga, F., Casali, V. W. D., Picanço, M. and Foster, J. E. (2004) Genetic divergence among tomato leafminer populations based on AFLP analysis. Pesquisa Agropecuária Brasileira 39, 645651.Google Scholar
Timm, A. E., Geertsema, H. and Warnich, L. (2008) Population genetic structure of Grapholita molesta (Lepidoptera: Tortricidae) in South Africa. Annals of the Entomological Society of America 101, 197203.Google Scholar
Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Friters, A., Pot, J., Paleman, J., Kuiper, M. and Zabeau, M. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23, 44074414.Google Scholar
Welsh, J. and McClelland, M. (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research 18, 72137218.Google Scholar
Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A. and Tingey, S. V. (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, 65316535.Google Scholar
Yeh, F. C., Rong-cai, Y. and Boyle, T. (1999) POPGENE version 1.31. University of Alberta and Centre for International Forestry Research, Edmonton, Alberta, Canada. Available at: https://sites.ualberta.ca/~fyeh/popgene.pdf.Google Scholar