Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T06:00:53.635Z Has data issue: false hasContentIssue false

Expression, mechanisms and chemistry of resistance in soybean, Glycine max L. (Merr.) to the soybean looper, Pseudoplusia includens (Walker)

Published online by Cambridge University Press:  19 September 2011

C. Michael Smith
Affiliation:
Department of Entomology, Louisiana Agricultural Experiment Station, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A.
Get access

Abstract

The soybean plant introduction (PI)227687 is highly resistant to 16 different insect pests of soybean in Australia, Brazil, Taiwan and the United States. In most of the pest Lepidoptera, resistance is expressed as greatly increased mortality in the later larval instars. The soybean looper, Pseudoplusia includens (Walker) is most severely affected in the final larval instar. Antibiotic effects include reduced weight gain, growth rate and increased mortality. These effects are enhanced by mechanically wounding foliage 24 hr prior to larval consumption. Antibiosis appears to be due to the combined effects of a feeding deterrent and a growth inhibitor. Resistance is location-specific on (PI)227687 plants and occurs abruptly on the third fully-expanded leaf from the plant apex. Larval growth on leaves of the susceptible variety ‘Davis’ is similar to or greater than that of the upper, susceptible leaves of (PI)227687. Resistance appears to be chemically based, since larvae fed artificial diets containing leaf extracts exhibit antibiotic symptoms similar to those fed fresh (PI)227687 leaves.

Résumé

La plante de soja (PI)227687 est résistante à 16 différents insectes qui lui sont nuisibles en Australie, au Brésil, au Taiwan et aux Etats Unis d'Amérique. Dans la plupart des insectes lépidoptères, la résistance est exprimée comme une mortalité accure au cours des phases larvaires secondaires. La résistance chez la plante de soja (PI)227687 à l'arpenteuse Pseudoplusia includens (Walker) est antixénotique à cause d'un préventif alimentaire et d'un antibiotique dû à un inhibiteur de croissance métabolique. Les effets de l'antibiotique comprennent une augmentation réduite du poids, une réduction du taux de croissance et une mortalité accrue. Ces effets sont accrus par l'ulcération mécanique des feuilles 24 hr avant la consommation larvaire. La résistance est spécifique à l'emplacement chez les plantes (PI)227687 et survient brusquement sur la troisième feuille complètement développée à partir du sommet de la plante. La croissance larvaire sur les feuilles de la variété susceptible ‘Davies’ est similaire ou plus importante que celle ayant lieu sur les feuilles susceptibles supérieures de (PI)227687. La résistance semble avoir une base chimique, car les larves nourris aux aliments artificiels contenant les extraits des feuilles présentent des symptômes antibiotiques similaires à ceux présentés par ceux qui sont nourris aux feuilles fraiches de (PI)227687.

Type
Section I: Types and mechanisms of host plant resistance
Copyright
Copyright © ICIPE 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Clark, W. J., Harris, F. A., Maxwell, F. G. and Hartwig, E. E. (1972) Resistance of certain soybean cultivars to bean leaf beetle, striped blister beetle, and bollworm. J. econ. Ent. 65, 16691672.CrossRefGoogle Scholar
Dowd, P. F., Smith, C. M. and Sparks, T. C. (1983) Influence of soybean leaf extracts on ester cleavage in cabbage and soybean loopers. J. econ. Ent. 76, 700703.CrossRefGoogle Scholar
Dreyer, D. L., Binder, R. G., Chan, B. G., Waiss, A. C. Jr, Hartwig, E. E. and Beland, G. L. (1979) Pinitol, a larval growth inhibitor for Heliothis zea in soybeans. Experientia 35, 11821183.CrossRefGoogle ScholarPubMed
Grunwald, C. and Kogan, M. (1981) Sterols of soybeans differing in insect resistance and maturity group. Phytochemistry 21, 765768.CrossRefGoogle Scholar
Hatchett, J. H., Beland, G. L. and Hartwig, E. E. (1976) Leaf-feeding resistance to bollworm and tobacco budworm in three soybean plant introductions. Crop Sci. 16, 277280.CrossRefGoogle Scholar
Jones, W. A. and Sullivan, M. J. (1979) Soybean resistance to the southern green stink bug, Nezara viridula. J. econ. Ent. 72, 628632.CrossRefGoogle Scholar
Kilen, T. C., Hatchett, J. H. and Hartwig, E. E. (1977) Evaluation of early generation soybeans for resistance to soybean loopers. Crop Sci. 17, 397398.CrossRefGoogle Scholar
Kogan, M. and Paxton, J. (1983) Natural inducers of plant resistance to insects. In Plant Resistance to Insects (Edited by Hedin, P. A.), pp. 153171. American Chemical Society, Washington, D.C.CrossRefGoogle Scholar
Lambert, L. and Kilen, T. C. (1984) Insect resistance factor in soybean PI's 229358 and 227687 demonstrated by grafting. Crop Sci. 24, 163164.CrossRefGoogle Scholar
Lourencao, A. L. and Yuki, V. A. (1980) Oviposition of Bemisia tabaci (Genn.) in F1 soybean plants of crosses between PI229358 and commercial varieties. Soybean Genet. Newsl. 7, 1820.Google Scholar
Luedders, V. D. and Dickerson, W. A. (1977) Resistance of selected soybean genotypes and segregating populations of cabbage looper feeding. Crop Sci. 17, 395396.CrossRefGoogle Scholar
Newsom, L. D., Kogan, M., Miner, F. D., Rabb, R. L., Turnipseed, S. G. and Whitcomb, W. H. (1980) General accomplishments toward better pest control in soybean. In New Technology of Pest Control (Edited by Huffaker, C. B.), pp. 5198. Wiley, New York.Google Scholar
Reynolds, G. W. and Smith, C. M. (1985) Effects of leaf position and plant age on resistance in soybean PI227687 to the soybean looper. Environ. Ent. Vol. 14. In press.CrossRefGoogle Scholar
Reynolds, G. W., Smith, C. M. and Kester, K. M. (1985) Reductions in consumption, utilization, and growth rate of soybean looper (Lepidoptera: Noctuidae) Larvae fed foliage of soybean genotype PI 227687. J. econ. Ent. 77, 13711375.CrossRefGoogle Scholar
Rezende, J. A. M. and deMiranda, M. A. C. (1980) Performance of F1 generation of soybean in relation to Colaspis sp. and Diabrotica speciosa. Soybean Genet. Newsl. 7, 2122.Google Scholar
Sisson, V. A., Miller, P. A., Campbell, W. V. and Van Duyn, J. W. (1976) Evidence of inheritance of resistance to the Mexican bean beetle in soybeans. Crop Sci. 16, 835837.CrossRefGoogle Scholar
Smith, C. M. (1978) Factors for consideration in designing short-term insect—host plant bioassays. Bull. ent. Soc. Am. 24, 393395.Google Scholar
Smith, C. M. and Brim, C. A. (1979) Resistance to Mexican bean beetle and corn earworm in soybean genotypes derived from PI227687. Crop Sci. 19, 313314.CrossRefGoogle Scholar
Smith, C. M. and Gilman, D. F. (1981) Comparative resistance of multiple insect resistant soybean genotypes to the soybean looper. J. econ. Ent. 74, 400403.CrossRefGoogle Scholar
Smith, C. M. and Fischer, N. H. (1983) Chemical factors of an insect resistant soybean genotype affecting growth and survival of the soybean looper. Entomologia exp. appl. 33, 343345.CrossRefGoogle Scholar
Talekar, N. S. (1983) Soybean resistance to beet armyworm. Pl. Resist. Insects Newsl. 9, 75.Google Scholar
Tester, C. F. (1977) Constituents of soybean cultivars differing in insect resistance. Phytochemistry 16, 18991902.CrossRefGoogle Scholar
Tuart, L. D. and Rose, I. A. (1979) Resistance to Heliothis armigera and Heliothis punctigera in three soybean lines. Soybean Genet. Newsl. 6, 1214.Google Scholar
Turnipseed, S. G. and Sullivan, M. J. (1976) Plant resistance in soybean insect management. In World Soybean Research (Edited by Hill, L. D.), pp. 549–60. The Interstate Printers and Publishers, Danville, Ill.Google Scholar
Van Duyn, J. W., Turnipseed, S. G. and Maxwell, J. D. (1972) Resistance in soybean to the Mexican bean beetle. II. Reactions of the beetle to resistant plants. Crop Sci. 12, 561562.CrossRefGoogle Scholar