Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-30T16:53:50.072Z Has data issue: false hasContentIssue false

Evaluation of Food Consumption, Haemolymph Protein Content and Survival of the Grasshopper Euprepocnemis plorans Fed on Clover, Lupine or Horsebean

Published online by Cambridge University Press:  19 September 2011

G. El Sayed
Affiliation:
Department of Economic Entomology and Pesticides, Faculty of Agriculture, University of Cairo, Giza, Egypt
Get access

Abstract

The effects of diet on quantitative nutritional indices were measured in fifth-instar female nymphs of the grasshopper, Euprepocnemis plorans. Analysis of the main and interactive effects of feeding on the host plants lupine (Lupinus termis), horsebean (Vicia faba) or clover (Trifolium alexandrinum) and some of the plants' allelochemicals indicated that nymph performance was adversely affected by the hydrogen cyanide (HCN) and quinolizidine in horsebean and lupine respectively. Assimilation of clover was higher than of lupine or horsebean. Relative growth rate (RGR) was significantly higher in grasshoppers fed on clover than in those fed on either lupine or horsebean. Relative consumption rate (RCR) was in the order lupine > clover > horsebean. The efficiency of the digested and ingested food conversion were significantly lower in grasshoppers fed on lupine or horsebean than those fed on clover. The duration of the fifth instar was in the order horsebean > lupine > clover. Grasshoppers fed on horsebean or lupine lost weight during the experiment, with a greater weight loss recorded in those fed on horsebean. Grasshoppers contained the highest concentration of haemolymph proteins when fed on clover. Short-term feeding on lupine and horsebean resulted in 10 and 20 % mortality respectively, and nymphs that died on a horsebean diet were malformed.

Résumé

Les effets du régime alimentaire sur les indices quantitatifs de nutrition ont été mesurés chez les nymphs femelles de stade V du criquet, Euprepocnemis plorans. L'analyse des effets principaux et interdépendants de l'alimentation sur les plantes-hôtes, c'est-à-dire le lupin (Lupinus termis), la fève (Vicia faba) ou le trèfle (Trifolium alexandrinum) et les effets de certaines substances allélotrophes de ces plantes ont montré-que la croissance et le développement des nymphes étaient sérieusement affectés par l'acide cyanidrique (HCN) et la quinolizidine contenus respectivement dans la fève et le lupin. Le trèfle était plus assimilé par rapport au lupin et la fève. Le taux relatif de croissance était significativement élevé chez les criquets nourris sur le trèfle que chez ceux élevés sur le lupin ou et la fève. Le taux relatif de consommation était plus élevé chez les criquet nourris sur le lupin suivi du trèfle, puis la fève. L'efficacité de transformation de la nourriture ingérée et digérée était significativement basse chez les criquets nourris sur le lupin ou la fève comparativement au trèfle. La durée de stade nymphal V était supérieur chez les insectes nourris sur la fève suivie de lupin puis le trèfle. Les criquets élevés sur la fève ou le lupin perdaient de leur poids au cours de l'expérience et cette perte était plus prononcée chez les criquets nourris sur la fève. La concentration la plus élevée en protéines dans l'hémolymphe était observée chez les criquets nourris sur le trèfle. Une brève alimentation sur le lupin et la fève provoquait des mortalités respectives de 10 et 20%, et les nymphes trouvés mortes sur la fève montraient des malformations.

Type
Research Articles
Copyright
Copyright © ICIPE 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barbosa, P., Martinat, P. and Waldvogel, M. (1986) Development, fecundity and survival of the herbivore Lymanlria dispar and the number of plant species in its diet. Ecol. Ent. 11, 16.CrossRefGoogle Scholar
Barnes, D. L. (1955) Effect of food plants on the lesser migratory grasshopper, J. Econ Ent. 48, 119124.CrossRefGoogle Scholar
Ben-Halima, T., Louveaux, A. and Gillon, Y. (1983) Role de l'eau boisson sur la prise de nourriture seche et le development ovarien de Locusta migratoria migratorioides. Ent. Exp. Appl. 33, 329335.CrossRefGoogle Scholar
Bernays, E. A. (1990) Plant secondary compounds deterrent but not toxic to the grass specialist acridida Locusta migratoria “Implications for the evolution of graminivory”. Ent. Exp. Appl. 54, 5356.CrossRefGoogle Scholar
Bernays, E. A. and Chapman, R. F. (Eds) (1994) Host-Plant Selection by Phytophagous Insects. Chapman & Hall, New York. 283 pp.CrossRefGoogle Scholar
Bowers, M. D., Stamp, N. E. and Fajer, E. D. (1991) Factors affecting calculation of nutritional indices for foliage-fed insects: An experimental approach. Ent. Exp. Appi. 61, 101116.CrossRefGoogle Scholar
Broadway, R. M. and Duffey, S. S. (1988) The effect of plant protein quality in insect digestive physiology and toxicity of plant proteinase inhibitors, J. Insect Physiol. 34, 111117.CrossRefGoogle Scholar
Burgess, E. P. J., Stevens, P. S., Keen, J. K., Laing, W. A. and Christeller, J. T. (1991) Effects of protease inhibitors and dietary protein level on the black field cricket Teleogryllus commodus. Ent. Exp. Appl. 61, 123130.CrossRefGoogle Scholar
Conn, E. E. (1979) Cyanide and cynogenic glycosides, pp. 378412. In Herbivores: Their Interaction With Secondary Plant Metabolites (Edited by Rosenthal, G. A. and Janzen, D. H.). Academic Press, New York.Google Scholar
Cottee, P. K., Bernays, E. A. and Mordue, A. J. (1988) Comparisons of deterrency and toxicity of selected secondary plant compounds to an oligophagous and polyphagous acridid. Ent. Exp. Appl. 46, 241247.CrossRefGoogle Scholar
El-Sayed, G. (1994) Does chronic toxicity display biochemical coevolution in the desert locust Schistocerca gregaria (Forskal)? PhD thesis, University of Cairo, Egypt.Google Scholar
Feeny, P. P. (1977) Defensive ecology of the Cruciferae. Ann. Missouri Bot. Gard. 64, 221234.CrossRefGoogle Scholar
Ghaout, S., Louveaux, A., Mainguet, A. M., Deshamps, M. and Phal, Y. (1991) What defense does Schouwia purpurea (Cruciferae) have against the desert locust? J. Chem. Ecol. 17, 14991515.CrossRefGoogle ScholarPubMed
Greenfield, M. D., Shelly, T. E. and Coloma, A. G. (1989) Territory selection in a desert grasshopper: The maximization of conversion efficiency on a chemically defended shrub. Anim. Ecol. 58, 761771.CrossRefGoogle Scholar
Henry, R. (1964) Principles and Technics. Chim. Chem. Harper-Row, New York, 182 pp.Google Scholar
Hinks, C. F. and Erlandson, M. A. (1995) The accumulation of haemolymph proteins and activity of digestive proteinases of grasshoppers (Melanoplus sanguinipes) fed on wheat, oats or kochia. J. Insect Physiol. 41, 425433.CrossRefGoogle Scholar
Hinks, C. F. and Hupka, D. (1995) The effects of leaf sap from oats and wheat, with and without soybean trypsin inhibitor, on feeding behaviour and digestive physiology of adult males of Melanoplus sanguinipes. J. Insect Physiol. 41, 10071015.CrossRefGoogle Scholar
Hinks, C. F., Cheeseman, M. T., Erlandson, M. A., Olfert, O. and Westcott, N. D. (1991) The effects of kochia, wheat and oats on digestive proteinases and the protein economy of adult grasshopper Melanoplus sanguinipes. J. Insect Physiol. 37, 417430.CrossRefGoogle Scholar
Hinks, C. F., Hupka, D. and Olfert, O. (1993) Nutrition and protein economy in grasshoppers and locusts. Comp. Biochem. Physiol. 104A, 133142.CrossRefGoogle Scholar
Hough, J. A. and Pimentel, D. (1978) Influence of host foliage on the development, survival and fecundity of gypsy moth. Env. Ent. 7, 97102.CrossRefGoogle Scholar
Kloeke, J. A. and Kubo, I. (1991) Defense of plants through regulation of insect feeding behavior. Florida Entomologist 74, 1823.CrossRefGoogle Scholar
Manuwoto, S. and Scriber, J. M. (1982) Consumption and utilization of three maize genotypes by the southern army worm Spodoptera eridania. J. Econ. Ent. 75, 163167.CrossRefGoogle Scholar
Mattson, W. J. (1980) Herbivory in. relation to plant nitrogen content. Annu. Rev. Ecol. and Syst. 68, 822827.Google Scholar
Olfert, O., Hinks, C. F., Craig, W. and Westcott, N. D. (1990a) Resistance of Kochia scoparla (L.) to feeding damage by grasshoppers (Orthoptera: Acrididae) and other herbivorous insects, J. Econ. Ent. 83, 24212426.CrossRefGoogle Scholar
Olfert, O., Hinks, C. F. and Westcott, N. D. (1990b) Analysis of the factors contributing to the biotic potential of grasshoppers (Orthoptera: Acrididae) reared on different cereal cultivars in the laboratory and in the field, J. Agrie. Ent. 7, 275282.Google Scholar
Raffa, K. F. (1987) Maintenance of innate feeding preferences by a polyphagous insect despite ingestion of applied deleterious chemicals. Ent. Exp. Appl. 44, 221227.CrossRefGoogle Scholar
Raubenheinner, D. and Simpson, S. J. (1992) Analysis of covariance: An alternative to nutritional indices. Ent. Exp. Appl. 26, 221231.CrossRefGoogle Scholar
Rhoades, D. F. (1979) Evolution of plant chemical defense against herbivores, pp. 154. In Herbivores: Their Interaction With Secondary Plant Metabolites (Edited by Rosenthal, G. A. and Janzen, D. H.). Academic Press, New York.Google Scholar
Scriber, J. M. (1977) Limiting effect of low-leaf-water content on the nitrogen utilization, energy budget and larval growth of Hyalophora cecropia (Lepidoptera: Saturniidae). Oecologia 28, 269287.CrossRefGoogle ScholarPubMed
Slansky, F. and Wheeler, G. S. (1991) Food consumption and utilization responses to dietary dilution with cellulose and water by velvetbean caterpillars, Anticarsia gemmatalis. Physioi. Ent. 16, 99116.CrossRefGoogle Scholar
Thomas, A. W. (1989) Food consumption and utilization by 6th instar larvae of spruce bud worm Choristoneura fiimiferana: A comparison on three Picea species. Ent. Exp. Appl. 52, 205214.CrossRefGoogle Scholar
Vrieling, K. (1990) Costs and benefits of alkaloids of Senecio jacobaea L. PhD thesis, University of Leiden.Google Scholar
Waldbauer, G. P. (1968) The consumption and utilization of food by insects. Adv. Insect Physioi. 5, 229288.CrossRefGoogle Scholar
Wink, M. (1992) The role of quinolizidine alkaloids in plant-insect interactions, pp. 131165. In Insect-Plant Interactions Vol. 4. (Edited by Bernays, E. A.). CRC Press, Boca Raton.Google Scholar