Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T02:46:20.976Z Has data issue: false hasContentIssue false

Efficacy of powdered maize cobs against the maize weevil Sitophilus zeamais (Coleoptera: Curculionidae) in stored maize in Senegal

Published online by Cambridge University Press:  22 May 2012

Momar Talla Gueye*
Affiliation:
Institut de Technologie Alimentaire, Hann-Dakar, BP2765, Senegal
Papa Seyni Cissokho
Affiliation:
Institut de Technologie Alimentaire, Hann-Dakar, BP2765, Senegal
Georg Goergen
Affiliation:
International Institute of Tropical Agriculture, Cotonou, 08 BP 09326, Benin
Saliou Ndiaye
Affiliation:
ENSA, BP A 296 Thiès RP. UFR SADR, Université de Thiès, Senegal
Dogo Seck
Affiliation:
Centre Régional de Recherche en Ecotoxicologie et Sécurité Environnementale (CERES/Locustox), BP 3300, Dakar, Senegal
Goulé Gueye
Affiliation:
BAMTAARE – SODEFITEX, BP 92, Tambacounda, Senegal
J.-P. Wathelet
Affiliation:
Université de Liège, Gembloux Agro-Bio Tech, Unité de Chimie Générale et Organique, 2 Passage des Déportés-5030, Gembloux, Belgium
Georges Lognay
Affiliation:
Université de Liège, Gembloux Agro-Bio Tech, Unité Analyses, Qualité, Risques – Laboratoire de Chimie Analytique, 2 Passage des Déportés-5030 Gembloux, Belgium
*
Get access

Abstract

Powdered maize cobs were tested as an alternative for pesticide use in stored maize. Five doses (2, 4, 6, 8 and 10 g/250 g seed) of powdered maize cobs applied at particle sizes of 1.4 and 0.4 mm diameter were compared with actellic powder against Sitophilus zeamais Motschulsky for 120 days. Mortality and survival data showed that cob powders did not act as fumigant but exerted a potent inhibition of progeny on direct contact with S. zeamais adults. The particle size of powdered cobs had no effect on maize damage and losses. At doses equal to or higher than 6 g powdered maize cobs/250 g grain maize, i.e. 2.4% (w/w), damage to grain was < 5% and weight losses < 1%. The protection offered at the highest dose was comparable to the pesticide control. The use of powdered maize cobs is discussed as a natural alternative to synthetic pesticides for protection of maize against S. zeamais.

Type
Research Paper
Copyright
Copyright © ICIPE 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W. S. (1925) A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265267.CrossRefGoogle Scholar
Adda, C., Borgemeister, C., Biliwa, A. and Meikle, W. G. (2002) Integrated pest management in post-harvest maize: a case study from the Republic of Togo (West Africa). Agriculture, Ecosystems and Environment 93, 305321.CrossRefGoogle Scholar
Akob, C. A. and Ewete, F. K. (2007) The efficacy of ashes of four locally used plant materials against Sitophilus zeamais (Coleoptera: Curculionidae) in Cameroon. International Journal of Tropical Insect Science 27, 2126.CrossRefGoogle Scholar
Athanassiou, C. G., Arthur, F. H., Kavallieratos, N. G. and Throne, J. E. (2011) Efficacy of spinosad and methoprene, applied alone or in combination, against six stored-product insect species. Journal of Pest Science 84, 6167.CrossRefGoogle Scholar
De Luca, Y. (1979) Ingrédients naturels de préservation des graines stockées dans les pays en voie de développement. Journée d'Agriculture Traditionnelle et de Botanique Appliquée 26, 169173.Google Scholar
Ekesi, S., Egwurube, E. A., Akpa, A. D. and Onu, I. (2001) Laboratory evaluation of the entomopathogenic fungus, Metarhizium anisopliae for the control of the groundnut bruchid, Caryedon serratus on groundnut. Journal of Stored Products Research 37, 313321.CrossRefGoogle ScholarPubMed
Fields, P. and Korunic, Z. (2002) Post-harvest insect control with inert dusts, pp. 650653. In Encyclopedia of Pest Management (Edited by Pimentel, D.). Marcel Dekker, New York.Google Scholar
Finney, D. J. (1971) Probit Analysis. Cambridge University Press, London. 139 pp.Google Scholar
Gakuru, S. and Foua-Bi, K. (1996) Effet d'extraits de plantes sur la bruche du niébé (Callosobruchus maculatus Fab.) et le charançon du riz (Sitophilus oryzae L.). Cahiers Agricultures 5, 3942.Google Scholar
Gudrups, I., Floyd, S., Kling, J. G., Bosque-Perez, N. A. and Orchard, J. E. (2001) A comparison of two methods of assessment of maize varietal resistance to the maize weevil, Sitophilus zeamais Motschulsky, and the influence of kernel hardness and size on susceptibility. Journal of Stored Products Research 37, 287302.CrossRefGoogle Scholar
Gwinner, J., Harnisch, R. and Mük, O. (1996) Manual on the Prevention of Post-harvest Grain Losses. Post-harvest Protection Project, GTZ, Eschborn, FRG. 330 pp.Google Scholar
Halstead, D. G. H. (1963) External sex differences in stored product Coleoptera. Bulletin of Entomological Research 54, 119134.CrossRefGoogle Scholar
Haque, M. A., Nakakita, H., Ikenaga, H. and Sota, N. (2000) Development-inhibiting activity of some tropical plants against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Journal of Stored Products Research 36, 281287.CrossRefGoogle ScholarPubMed
Holst, N., Meikle, W. G. and Markham, R. H. (2000) Grain injury models for Prostephanus truncatus (Coleoptera: Bostrichidae) and Sitophilus zeamais (Coleoptera: Curculionidae) in rural maize stores in West Africa. Journal of Economic Entomology 93, 13381346.CrossRefGoogle ScholarPubMed
Kimura, T., Mori, M., Susuki, A. and Kobayashi, A. (1981) Isolation and identification of two nematicidal substances from roots of Erigeron philadelphicus L. and nematicidal activities of their related compounds. Agriculture and Biological Chemistry 45, 29152917.Google Scholar
Markham, R. H., Bosque-Pérez, N. A., Borgemeister, C. and Meikle, W. G. (1994) Developing pest management strategies for Sitophilus zeamais and Prostephanus truncatus in the tropics. FAO Plant Protection Bulletin 42, 97116.Google Scholar
Meehan, A. P. (1980) The rodenticidal activity of reserpine and related compounds. Pesticide Science 11, 555561.CrossRefGoogle Scholar
Meikle, W. G., Cherry, A. J., Holst, N., Hounna, B. and Markham, R. H. (2001) The effects of an entomopathogenic fungus, Beauveria bassiana (Balsamo) Vuillemin (Hyphomycetes), on Prostephanus truncatus (Horn) (Col.: Bostrichidae), Sitophilus zeamais Motschulsky (Col.: Curculionidae), and grain losses in stored maize in the Benin Republic. Journal of Invertebrate Pathology 77, 198205.CrossRefGoogle ScholarPubMed
Meikle, W. G., Holst, N. and Markham, R. H. (1999) Population simulation model of Sitophilus zeamais (Coleoptera: Curculionidae) in grains stores in West Africa. Environmental Entomology 28, 836844.CrossRefGoogle Scholar
Ndiaye, A., Fofana, A., Ndiaye, M., Mbaye, D. F., Sene, M., Mbaye, I. and Chanerau, J. (2005) Les céréales, pp. 241256. In Bilan de la recherche agricole et agroalimentaire, 1964–2004. ISRA, ITA, CIRAD, Dakar, Senegal.Google Scholar
Ntonifor, N. N. and Monah, I. M. (2001) Use of three species to protect stored maize against Sitophilus zeamais. Tropical Science 41, 7477.Google Scholar
Pantenius, C. U. (1988) Etat des pertes dans les systèmes de stockage du maïs au niveau des petits paysans de la région maritime du Togo. GTZ Hamburg, 83 pp.Google Scholar
Philogène, B. J. R., Arnasson, J. T. and Lambert, J. D. H. (1989) Facteurs contribuant à la protection du maïs contre les attaques de Sitophilus et Prostephanus, pp. 141150. In Céréales en régions chaudes (edited by AUPELF-UREF, ). John Libbey Eurotext, Paris.Google Scholar
Richter, J., Biliwa, A. and Henning-Helbig, S. (1998) Efficacy of dust formulated insecticides in traditional maize stores in West Africa. Journal of Stored Products Research 34, 181187.CrossRefGoogle Scholar
Saayman, T. (1997) Protecting stored grains with dust and botanical ashes. Bulletin of the Plant Protection Research Institute 48, 69.Google Scholar
Sanon, A., Garbab, M., Augerb, J. and Huignard, J. (2002) Analysis of the insecticidal activity of methylisothiocyanate on Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) and its parasitoid Dinarmus basalis (Rondani) (Hymenoptera: Pteromalidae). Journal of Stored Products Research 38, 129138.Google Scholar
Seck, D., Lognay, G., Haubruge, E., Wathelet, J. P., Marlier, M., Gaspar, C. and Severin, M. (1993) Biological activity of the shrub Boscia senegalensis (Pers.) Lam. Ex Poir. (Capparaceae) on stored grain insects. Journal of Chemical Ecology 19, 377390.CrossRefGoogle Scholar
Tapondjou, L. A., Adler, C., Bouda, H. and Fontem, D. A. (2002) Efficacy of powder and essential oil from Chenopodium ambrosioides leaves as post-harvest grain protectants against six stored-product beetles. Journal of Stored Products Research 38, 395402.CrossRefGoogle Scholar
Tefera, T., Mugo, S., Likhayo, P. and Beyene, Y. (2011) Resistance of three-way cross experimental maize hybrids to post-harvest insect pests, the larger grain borer (Prostephanus truncatus) and maize weevil (Sitophilus zeamais). International Journal of Tropical Insect Science 31, 312.CrossRefGoogle Scholar
Thiaw, C., Guèye, S., Guèye-Ndiaye, A., Samb, A. and Sembène, M. (2007) Ovicid and adulticid effects of powders and extracts of Calotropis procera Ait. and of Senna occidentalis L. on Caryedon serratus (Ol.) destroyer of groundnut stocks. Journal des Sciences 7, 115.Google Scholar