Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T16:03:15.089Z Has data issue: false hasContentIssue false

Do Generalist Phytoseiid Mites (Gamasida: Phytoseiidae) Have Interactions with Their Host Plants?

Published online by Cambridge University Press:  19 September 2011

Serge Kreiter
Affiliation:
Ecole Nationale Supérieure Agronomique de Montpellier/Institut National de la Recherche Agronomique, UP d'Ecologie Animale et de Zoologie Agricole, Laboratoire d'Aearologie, 2 Place Pierre Viala, 34060 Montpellier cedex 01, France
Marie-Stéphane Tixier
Affiliation:
Ecole Nationale Supérieure Agronomique de Montpellier/Institut National de la Recherche Agronomique, UP d'Ecologie Animale et de Zoologie Agricole, Laboratoire d'Aearologie, 2 Place Pierre Viala, 34060 Montpellier cedex 01, France
Thierry Bourgeois
Affiliation:
Ecole Nationale Supérieure Agronomique de Montpellier/Institut National de la Recherche Agronomique, UP d'Ecologie Animale et de Zoologie Agricole, Laboratoire d'Aearologie, 2 Place Pierre Viala, 34060 Montpellier cedex 01, France
Get access

Abstract

In order to study factors affecting phytoseiid mite occurrence in uncultivated areas, we sampled phytoseiid mites (densities, diversity and age structure) on several plants located in 4 uncultivated areas surrounding European vineyards over 3 years to determine how plants, and mainly their leaf structure, affect mite communities. The plant composition of these areas greatly influenced phytoseiids density and diversity. The relationships between leaf structure (trichomes, pollen densities, number and structure of domatia, leaf surface) and Kampimodromus aberrans (Oudemans) densities were also studied. The frequency of occurrence and the abundance of K. aberrans per cm2 were correlated to high trichome densities. A complex phylloplane (many hairs and shelters or domatia) can benefit K. aberrans more than other phytoseiid mite species. The number and the rating of domatia were important for the development of K. aberrans; high proportions of immatures were observed only on plants with these structures. Pollen densities were significantly correlated to trichome densities; domatia structure had only a somewhat lesser effect. Furthermore, we demonstrated that K. aberrans does take up plant fluids. Our study shows how dense trichome and pollen levels can affect the development of K. aberrans populations and adds perspective to the influence of domatia on these important predaceous mite populations.

Résumé

Afin d'étudier les facteurs responsables de la présence des phytoséiides dans les zones non cultivées à proximité des parcelles, nous avons échantillonné les phytoséiides (densités, diversité et structure dáâge) sur plusieurs plantes localisées dans 4 zones non cultivées entourant des parcelles de vigne. Cette étude de 3 ans avait pour objectif de déterminer quelles plantes et surtout quelles structures des feuilles affectent les communautés d'acariens. La composition floristique de ces zones influence les densités et diversités des phytoséiides. La relation entre la structure des feuilles (trichomes, densités de pollen, nombre et structure des domaties, surface des feuilles) et les densités de Kampimodromus aberrans (Oudemans) ont aussi été étudiés. La fréquence de la présence et l'abondance de K. aberrans par cm2 sont corrélées aux densités élevées de trichomes. Une structure complexe du phylloplan (beaucoup de poils et abris ou domaties) pourrait conférer un avantage compétitif à K. aberrans au sein de peuplements de phytoséiides. Le nombre et le niveau d'ouverture des domaties semblent importants pour le développement de K. aberrans; des proportions élevées d'immatures ayant été observées seulement sur des plantes avec ces structures. Des densités élevées de pollen sont significativement corrélées à la densité de trichomes alors que la structure des domaties a un effet plus limité. De plus, nous avons démontré que K. aberrans absorbe des liquides directement à partir de la plante. Notre étude montre combien des trichomes denses et les taux de pollen pourraient affecter le développement des populations de K. aberrans et ouvre des perspectives importantes d'étude concernant l'influence des domaties sur ces populations de prédateurs importants.

Type
Research Articles
Copyright
Copyright © ICIPE 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Addison, J. A., Hardman, J. M. and Walde, S. J. (2000) Pollen availability for predaceous mites on apple: Spatial and temporal heterogeneity. Exp. Appl. Acarol. 24, 118.Google Scholar
Andersen, S. T. (1974) Wind conditions and pollen deposition in a mixed deciduous forest. Grana 4, 5777.CrossRefGoogle Scholar
Barret, D. (1994) Influence de l'architecture du phylloplan dans l'organisation des peuplements de phytoséiides et dans leurs associations avec les plantes. PhD thesis, ENSA Montpellier, France. 250 pp.Google Scholar
Barret, D. and Kreiter, S. (1995) Morphometrics of some phytoseiid mites and characteristics of their habitat: consequences for biological control, pp. 461473. In The Acari. Physiological and Ecological Aspects of Acari-Host Relationships (Edited by Kropczynska, D. et al.). Warzawa, Poland.Google Scholar
Beery, W. L., Stimmann, M. W. and Wolf, W.W. (1972) Marking native phytophagous insects with rubidium: A proposed technique. Ann. Entomol. Soc. Am. 65, 236238.CrossRefGoogle Scholar
Boller, E. F. (1984) Eine einfache Ausschwemm methode zur schnellen Erfassung von Raubmilben, Thrips und anderen Kleinarthropoden im Weinbau. Schweiz. Zeitschrift Obst-Weinbau 120, 249255.Google Scholar
Camporese, P. and Duso, C. (1996) Different colonization patterns of phytophagous mites (Acari: Tetranychidae, Phytoseiidae) on three grape varieties: A case study. Exp. Appl. Acarol. 20, 122.CrossRefGoogle Scholar
Chant, D. A. and McMurtry, J. A. (1994) A review of the subfamilies Phytoseiinae and Typhlodrominae (Acari: Phytoseiidae). Int. J. Acarol. 20, 223316.Google Scholar
Coiutti, C. (1993) Acari fitoseidi su piante arboree spontanee e coltivate in Fruili-Venezia Giulia. Frust. Entomol. 16, 6577.Google Scholar
Cour, P. (1974) Nouvelles techniques de détection des flux et des retombées polliniques: étude de la sédimentation des pollens et des spores à la surface du sol. Pollen et Spores 16, 103141.Google Scholar
Croft, B. A. and Slone, D. H. (1998) Perturbation of regulated apple mites: Immigration and pesticide effects on outbreaks of Panonychus ulmi and associated mites (Acari: Tetranychidae, Eriophyidae, Phytoseiidae and Stigmaeidae). Environ. Entomol. 27, 15481556.CrossRefGoogle Scholar
Duso, C. (1992) Role of Amblyseius aberrans (Oudemans), Typhlodromus pyri Scheuten and Amblyseius andersom (Chant) (Acari: Phytoseiidae) in vineyards. III. Influence of variety characteristics on the success of A. aberrans and T. pyri releases, J. Appl. Entomol. 114, 455462.Google Scholar
Duso, C., Malagnini, V. and Paganelli, A. (1997) Indagini preliminari sul rapporto tra polline e K. aberrans su Vite. Allionia 35, 229239.Google Scholar
Duso, C., Torresan, L. and Vettorazzo, E. (1993) La vegetazione spontanea come riserva di ausiliari: Considerazioni sulla diffusione degli Acari Fitoseidi (Acari: Phytoseiidae) in un vigneto e sulle piante spontanee contigue. Boll. Zool. Agr. Bach. 25, 183203.Google Scholar
Duso, C. and Vettorrazzo, E. (1999) Mite population dynamics on different grape varieties with or without phytoseiids released (Acari: Phytoseiidae). Exp. Appl. Acarol. 23, 741763.Google Scholar
Engel, R. (1989) Alternative prey and other food resources of the phytoseiid mites Typhlodromus pyri. Zusamm. Tagungs. Sitten. 28, 124127.Google Scholar
Faegri, K. and Iversen, J. (1989) Textbook of Pollen Analysis. 4th ed.John Wiley & Sons, New York, USA.Google Scholar
Fernandes, O. A., Wright, R. J., Baumgarten, R. J. and Mayo, Z. B. (1978) Use of rubidium to label Lysiphhlebus testaceipes, a parasitoid of green bugs, for dispersal studies. Environ. Entomol. 26, 11671172.Google Scholar
Frazer, B. D. and Raworth, D. (1974) Marking aphids with rubidium. Can. J. Zool. 52, 11351136.CrossRefGoogle Scholar
Grafton-Cardwell, E. E. and Ouyang, Y. (1996) Influence of citrus leaf nutrition on survivorship, sex ratio, and reproduction of Euseius tularensis (Acari: Phytoseiidae). Environ. Entomol. 25, 10201025.CrossRefGoogle Scholar
Graham, H. M., Wolfenbarger, D. A. and Nosky, J.B. (1978) Labeling plants and their insect fauna with rubidium. Environ. Entomol. 7, 379383.CrossRefGoogle Scholar
Jackson, C. G. (1991) Elemental markers for entomophagous insects. Southwest. Entomol. 14, 6569.Google Scholar
Karban, R., English-Loeb, G., Walker, M. A. and Thaler, J. (1995) Abundance of phytoseiid mites on Vitis sp.: Effects of leaf hairs, domatia, prey abundance and plant phylogeny. Exp. App. Acarol. 19, 189197.Google Scholar
Kreiter, S., Tixier, M.-S., Auger, P., Muckensturm, N., Sentenac, G., Doublet, B. and Weber, M. (2000) Phytoseiid mites of vineyards in France (Acari: Phytoseiidae). Acarologia 41, 7796.Google Scholar
Kropczynska, D., Van de Vrie, M. and Tomczyk, A. (1988) Bionomics of Eotetranychus tiliarum and its phytoseiid predators. Exp. Appl Acarol. 5, 6581.CrossRefGoogle Scholar
Lester, P.J., Thistlewood, H.M.A. and Harmsen, R. (2000) Some effects of pre-release host-plant on the biological control of Panonychus ulmi by the predatory mite Amblyseius fallacis. Exp. Appl. Acarol. 24, 1933.Google Scholar
McMurtry, J. A. (1992) Dynamics and potential impact of “generalist” phytoseiids in agroecosystems and possibilities for establishment of exotic species. Exp. Appl. Acarol. 14, 371382.CrossRefGoogle Scholar
McMurtry, J. A. and Croft, B. A. (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu. Rev. Entomol. 42, 291321.CrossRefGoogle ScholarPubMed
Moraes, G. J. de, McMurtry, J. A. and Denmark, H. A. (1986) A Catalog of the Mite Family Phytoseiidae: References to Taxonomy, Synonymy, Distribution and Habitat. Embrapa, Brasilia, Brazil.Google Scholar
NP Stat® (1995) - Version 2.5. Praxeme R&D. CNRS.Google Scholar
O'Dowd, D. J. and Willson, M. F. (1989) Leaf domatia and mites on Australasian plants: Ecological and evolutionary implications. Biol. J. Linn. Soc. 37, 191236.Google Scholar
O'Dowd, D. J. and Willson, M. F. (1991) Associations between mites and leaf domatia. Trends Ecol. Evol. 6, 179182.Google Scholar
Ragusa di Chiara, S., Papaioannou-Souliotis, P., Tsolakis, H. and Tsagkarakou, N. (1995) Acari fitoseidi (Parasitiformes, Phytoseiidae) della Grecia associati a piante forestali a diverse altitudini. Boll. Zool. Agr. Bach. 27, 8591.Google Scholar
Schausberger, P. (1992) Vergleichende Untersuchungen zum Lebensverlauf die Erstellung von Lebenstafeln und die Vermehrungskapazitaet von Amblyseius aberrane. Oud. und Amblyseius finlandicus Oud. (Acari: Phytoseiidae). Pflanzenschutzberichte 52, 5371.Google Scholar
Schausberger, P. (1997) Inter- and intraspecific predation on immatures by adult females in Euseius finlandicus, Typhlodromus pyri and Kampimodromus aberrans (Acari: Phytoseiidae). Exp. Appl. Acarol. 21, 131150.CrossRefGoogle Scholar
Schausberger, P. (1998) Survival, development and fecundity in Euseius finlandicus, Typhlodromus pyri and Kampimodromus aberrans (Acari, Phytoseiidae) feeding on the San José scale Quadraspidiotus perniciosas (Coccina, Diaspididae). J. Appl. Entomol. 122, 5356.CrossRefGoogle Scholar
Schausberger, P. and Croft, B.A. (1999) Prédation and discrimination between con- and heterospecific eggs among specialist and generalist phytoseiid mites (Acari: Phytoseiidae). Biol. Contr. 28, 523528.Google Scholar
Scherrer, B. (1984) Biostatistique. Bibliothèque Nationale, Québec, Canada.Google Scholar
Sokal, R. R. and Rohlf, F. J. (1981) Biometry: The Principles and Practice of Statistics in Biological Research. Freeman ed., Biometry 2nd ed., New York, USA.Google Scholar
Statistica© (1998) Version 6.0. Statsoft, Inc., USA.Google Scholar
Surface foliaire, version 1–2© (1992) Cirad-Ca/Avenix, Montpellier, France.Google Scholar
Tixier, M.-S. (2000) La présence de phytoséiides dans les abords non cultivés des parcelles a-t-elle un intérêt appliqué en viticulture? PhD Thesis ENSA Montpellier, France.Google Scholar
Tixier, M.-S., Kreiter, S., Auger, P. and Weber, M. (1998) Colonization of Languedoc vineyards by phytoseiid mites (Acari: Phytoseiidae): Influence of wind and crop environment. Exp. Appl. Acarol. 22, 523542.Google Scholar
Walter, D. E. (1996) Living on leaves: Mites, fomenta and leaf domatia. Annu. Rev. Entomol. 41, 101114.CrossRefGoogle Scholar
Walter, D. E. and O'Dowd, D. J. (1992a) Leaves with domatia have more mites. Ecology 73, 15141518.CrossRefGoogle Scholar
Walter, D. E. and O'Dowd, D. J. (1992b) Leaf morphology and predators: Effect of leaf domatia on the abundance of predatory mites (Acari: Phytoseiidae). Environ. Entomol. 21, 478484.Google Scholar