Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T05:10:40.708Z Has data issue: false hasContentIssue false

Distribution Pattern of the Sugarcane Shoot Borer, Chilo infuscatellus Snellen

Published online by Cambridge University Press:  19 September 2011

Hans R. Sardana
Affiliation:
Sugarcane Breeding Institute, Regional Centre, Karnal-132001, India
Get access

Abstract

Studies were conducted on the spatial distribution of the sugarcane shoot borer, Chilo infuscatellus Snellen. Distribution was aggregated and described by the negative binomial model with a fixed mean size. Aggregated distribution probably resulted from environmental heterogeneity. The five quadrants of the field, i.e. north, south, east, west and central did not differ significantly in borer population. The optimum sample size, based on Iwao's formula, was 126 plants of 6 tillers each. The relevance of these findings to the management of C. infuscatellus is discussed.

Résumé

Des études ont été menées sur la distribution spaciale du foreur de bourgeon de la canne à sucre, Chilo infuscatellus Snellen. La distribution fut aggrégative et suivait le modèle binomial négatif avec une moyenne fixe. La distribution en aggrégat a probablement résulté de l'hétérogénéité environmentale. Les cinq quadrants du champs c.à.d. le quadrant nord, sud, est, ouest et central n'ont pas montré de différence significative de la population du foreur. La taille optimale d'échantillon, basée sur la formule d'Iwao, fut de 126 plantes de 6 talles chacune. Les résultats saillants pour le contrôle et la gestion de C. infuscatellus sont discutés.

Type
Research Articles
Copyright
Copyright © ICIPE 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anscombe, F. J. (1949) Statistical analysis on insect count based on negative binomial distribution. Biometrics 5, 165173.CrossRefGoogle Scholar
Arbous, A. C. and Kerrich, J. E. (1951) Accident statistics and the concept of accident proneness. Biometrics 7, 340.CrossRefGoogle Scholar
Avasthy, P. N. (1967) Reliable method of estimating intensity of stem borer damage in sugarcane. Indian Sug. 16, 551552.Google Scholar
Bliss, C. I. and Fisher, R. A. (1953) Fitting the negative binomial distribution to biological data and note on the efficient fitting of the negative binomial. Biometrics 9, 176200.CrossRefGoogle Scholar
Gupta, B. D. and Avasthy, P. N. (1954) A resume on the behaviour of varieties towards the incidence of major pests of sugarcane in U.P. and other states in India. 1946–1951.Proc. Bienn. Conf. Sug. Cane Res. Dev. Wkrs. India 2, 9597.Google Scholar
Harcourt, D. R. (1961) Design of a sampling plan for studies on the population dynamics of the diamond back moth, Plutella maculipennis (Cust.). Can. Ent. 93, 820831.CrossRefGoogle Scholar
Iwao, S. (1968) A new regression method for analysing the aggregation pattern of animal populations. Res. Popul. Ecol. 10, 120.CrossRefGoogle Scholar
Iwao, S. (1977) The m*-m statistics as a comprehensive method for analysing spatial patterns of biological populations and its application to sampling problems. JIBP Synthesis 17, 2146, Tokyo University Press.Google Scholar
Patil, A. S. and Hafase, D. G. (1981) Research on sugarcane borers in Maharashtra. Proc. Natn. Symp. Stalk borer, Karnal pp. 165175.Google Scholar
Sardana, H. R. and David, H. (1992) Efficacy of some insecticides for the control of shoot borer, Chilo infiiscatellus Snellen (Crambidae: Lepidoptera) of sugarcane. Indian J. Ent. 54, 164167.Google Scholar
Southwood, T. R. E. (1978) Ecological Methods. London, Chapman & Hall. 524 pp.Google Scholar
Taylor, L. R. (1961) Aggregation, variance and mean. Nature 189, 732735.CrossRefGoogle Scholar
Utida, S., Kono, T., Watanabe, S. and Yoshida, T. (1952) Pattern of spatial distribution of the common cabbage butterfly, Pieris rapae in a cabbage farm. Res. Pop. Ecol. 1, 4464.Google Scholar