Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-24T12:29:17.101Z Has data issue: false hasContentIssue false

Distribution and community composition of carabid beetles (Coleoptera: Carabidae) in Ranomafana National Park, Madagascar

Published online by Cambridge University Press:  11 May 2012

Johanna Rainio*
Affiliation:
Department of Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65 (Viikinkaari 1), FI-00014, Helsinki, Finland
*
Get access

Abstract

Forest loss has caused fragmentation and destruction of habitats, and thereby presents serious extinction risk to many endemic species in Madagascar. Among many other arthropod groups, carabid beetles are poorly known in Madagascar as regards their distribution, habitat requirements and taxonomy. The aim of this study is to document community composition, distribution patterns and habitat preferences of carabids in the forest-dominated Ranomafana National Park, south-eastern Madagascar. Carabids were collected by hand and trunk traps from secondary forest, primary forest and nearby village areas. In total, 4314 individuals representing 125 species, including 38 new species, were collected. Almost 70% of the species were recorded in very low abundances. Furthermore, there were only a few species in intermediate abundance classes, while the three most abundant species represented ~36% of the total catch. The carabid community seems to be very species rich, consisting mostly of species in low abundances. A positive correlation was found between abundance and occupancy despite high variation among species distribution patterns. Small population sizes of endemic species with nearby habitat destruction make the species especially vulnerable to extinction and increase the importance of protecting Ranomafana National Park.

Type
Research Paper
Copyright
Copyright © ICIPE 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basilewsky, P. (1973) Insectes: Coléoptères Carabidae Scaritinae. Faune de Madagascar, 37, 1322.Google Scholar
Basilewsky, P. (1985) Insectes: Coléoptères Carabidae Platyninae. Faune de Madagascar, 64, 1543.Google Scholar
Blackburn, T. M., Cassey, P. and Gaston, K. J. (2006) Variations on a theme: sources of heterogeneity in the form of the interspecific relationship between abundance and distribution. Journal of Animal Ecology 75, 14261439.CrossRefGoogle ScholarPubMed
Brooks, T. M., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., Rylands, A. B., Konstant, W. R., Flick, P., Pilgrim, J., Oldfield, S., Magin, G. and Hilton-Taylor, C. (2002) Habitat loss and extinction in the hotspots of biodiversity. Conservation Biology 16, 909923.CrossRefGoogle Scholar
Brown, J. H. (1984) On the relationship between abundance and distribution of species. The American Naturalist 124, 255279.CrossRefGoogle Scholar
Burgess, N. D., D'Amico Hales, J., Ricketts, T. H. and Dinerstein, E. (2006) Factoring species, non-species values and threats into biodiversity prioritisation across the ecoregions of Africa and its islands. Biological Conservation 127, 383401.CrossRefGoogle Scholar
Chao, A. (1984) Non-parametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11, 265270.Google Scholar
Colwell, R. K. (2005) Estimates: Statistical Estimation of Species Richness and Shared Species from Samples. Version 7.5. User's Guide and Application Available at: http://viceroy.eeb.uconn.edu/estimates.Google Scholar
Eversham, B. C., Roy, D. B. and Telfer, M. G. (1996) Urban, industrial and other manmade sites as analogues of natural habitats for Carabidae. Annales Zoologici Fennici 33, 148156.Google Scholar
Gaston, K. J. (1994) Rarity. Chapman and Hall, London205 pp.CrossRefGoogle Scholar
Gaston, K. J. and Kunin, W. E. (1997) Rare-common differences: an overview, pp. 1229. In The Biology of Rarity: Causes and Consequences of Rare–Common Differences (edited by Kunin, W. E. and Gaston, K. J.). Chapman and Hall, London.CrossRefGoogle Scholar
Gaston, K. J., Blackburn, T. M., Greenwood, J. J. D., Gregory, R. D., Quinn, R. M. and Lawton, J. H. (2000) Abundance–occupancy relationships. Journal of Applied Ecology 37 (suppl. 1), 3959.CrossRefGoogle Scholar
Gilpin, M. E. and Soulé, M. E. (1986) Minimum viable populations: processes of species extinction, pp. 1934. In Conservation Biology: The Science of Scarcity and Diversity (edited by Soulé, M. E.). Sinauer, Sunderland, MA.Google Scholar
Gray, J. S., Bjørgesæter, A. and Ugland, K. I. (2005) The impact of rare species on natural assemblages. Journal of Animal Ecology 74, 11311139.CrossRefGoogle Scholar
Green, G. M. and Sussman, R. W. (1990) Deforestation history of the eastern rain forest of Madagascar from satellite images. Science 248, 212215.CrossRefGoogle ScholarPubMed
Grenfell, S. (1995) Management Plan for Ranomafana National Park. ICTE report..Google Scholar
Imura, Y. (1989) Natural hybrids of the Damaster species (Coleoptera, Carabidae) in Hokkaido, northern Japan. Japanese Journal of Entomology 57, 6771.Google Scholar
Jeannel, R. (1946) Coléoptères carabiques de la région Malgache (première partie). Faune de L'Empire Français VI, 1372.Google Scholar
Jeannel, R. (1948) Coléoptères carabiques de la région Malgache (deuxième partie). Faune de L'Empire Français X, 373765.Google Scholar
Jeannel, R. (1949) Coléoptères carabiques de la région Malgache (troisième partie). Faune de L'Empire Français XI, 7661146.Google Scholar
Kean, J. and Barlow, N. (2004) Exploring rarity using a general model for distribution and abundance. The American Naturalist 163, 407416.CrossRefGoogle ScholarPubMed
Lawton, J. H. (1993) Range, population abundance and conservation. Trends in Ecology and Evolution 8, 409413.CrossRefGoogle ScholarPubMed
Lawton, J. H. (1996) Population abundances, geographic ranges and conservation. Bird Study 43, 319.CrossRefGoogle Scholar
Lorenz, W. (2005) Systematic List of Extant Ground Beetles of the World (Insecta, Coleoptera ‘Geadephaga’: Trachypachidae and Carabidae incl. Paussinae, Cicindelinae, Rhysodinae). 2nd edn.Tutzing, Verlag. 530 pp.Google Scholar
Lövei, G. L. and Sunderland, K. D. (1996) Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annual Review of Entomology 41, 231256.CrossRefGoogle ScholarPubMed
Lucky, A., Erwin, T. and Witman, J. D. (2002) Temporal and spatial diversity and distribution of arboreal Carabidae (Coleoptera) in a Western Amazonian rain forest. Biotropica 34, 376386.CrossRefGoogle Scholar
Martikainen, P. and Kaila, L. (2004) Sampling saproxylic beetles: lessons from a 10-year monitoring study. Biological Conservation 120, 171181.CrossRefGoogle Scholar
Mossakowski, D., Braun, S. and Roschen, A. (1990) Hybridization in natural populations of ground beetles (Coleoptera, Carabidae). Canadian Journal of Zoology 68, 17831789.CrossRefGoogle Scholar
Niemelä, J. (1993) Mystery of the missing species: species-abundance distribution of boreal ground-beetles. Annales Zoologici Fennici 30, 169172.Google Scholar
Novotný, V. and Basset, Y. (2000) Rare species in communities of tropical insect herbivores: pondering the mystery of singletons. Oikos 89, 564572.CrossRefGoogle Scholar
Obydov, D. (2001) A natural hybrid between Carabus (Cratocarabus) jakobsoni Semenov, 1908 and Carabus (Cratocechenus) elisabethae Semenov, 1908 (Coleoptera: Carabidae). Acta Entomologica Slovenia 9, 123127.Google Scholar
Rabinowitz, D. (1981) Seven forms of rarity, pp. 205217. In The Biological Aspects of Rare Plant Conservation (edited by Synge, H.). John Wiley and Sons, Chichester.Google Scholar
Rainio, J. (2009) Carabid beetles (Coleoptera, Carabidae) as indicators of environmental change in Ranomafana National Park, Madagascar. PhD thesis. University of Helsinki, Helsinki.Google Scholar
Sota, T., Kusumoto, F. and Kubota, K. (2000) Consequences of hybridization between Ohomopterus insulicola and O. arrowianus (Coleoptera, Carabidae) in a segmented river basin: parallel formation of hybrid swarms. Biological Journal of the Linnean Society 71, 297313.CrossRefGoogle Scholar
Stork, N. E. (1987) Adaptations of arboreal ground beetles to life in trees. Acta Phytopathologica et Entomologica Hungarica 22, 273291.Google Scholar
Sussman, R. W., Green, G. M. and Sussman, L. K. (1994) Satellite imagery, human ecology, anthropology, and deforestation in Madagascar. Human Ecology 22, 333354.CrossRefGoogle Scholar
Thiele, H.-U. (1977) Carabid Beetles in Their Environments. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Vennila, S. and Rajagopal, D. (2003) Phenology of tropical carabids (Coleoptera: Carabidae). Journal of Entomological Research 27, 17.Google Scholar
Veyrier, R., Audiot, P., Meusnier, S. and Brouat, C. (2005) Introgression in natural populations of bioindicators: a case study of Carabus splendens and Carabus punctatoauratus. Molecular Ecology 14, 37753786.Google Scholar
Warren, M., McGeoch, M. A. and Chown, S. L. (2003) Predicting abundance from occupancy: a test for an aggregated insect assemblage. The Journal of Animal Ecology 72, 468477.CrossRefGoogle Scholar
Wolda, H. (1983) Seasonality of Homoptera on Barro Colorado Island, pp. 319330. In The Ecology of a Tropical Forest. Seasonal Rhythms and Long-term Changes (edited by Leigh, E. G. Jr, Rand, A. S. and Windsor, D. M.). Smithsonian Institution Press, Washington, DC.Google Scholar
Wright, P. C. and Andriamihaja, B. (2003) The conservation value of long-term research: a case study from the Parc National de Ranomafana, pp. 14851488. In The Natural History of Madagascar (edited by Goodman, S. M. and Benstead, J. P.). The University of Chicago Press, Chicago, IL.Google Scholar