Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T16:03:10.409Z Has data issue: false hasContentIssue false

Dispersal of Kampimodromus aberrans (Oudemans) between Uncultivated Areas and Grape Fields: Does Pesticide Application Affect the Settlement of Migrants?

Published online by Cambridge University Press:  19 September 2011

Marie-Stéphane Tixier
Affiliation:
Ecole Nationale Supérieure Agronomique/Institut National de la Recherche Agronomique, UP d'Ecologie Animale et de Zoologie Agricole, Laboratoire d'Acarologie, 2 Place Pierre Viala, 34060 Montpellier cedex 01, France
Serge Kreiter
Affiliation:
Ecole Nationale Supérieure Agronomique/Institut National de la Recherche Agronomique, UP d'Ecologie Animale et de Zoologie Agricole, Laboratoire d'Acarologie, 2 Place Pierre Viala, 34060 Montpellier cedex 01, France
Get access

Abstract

Kampimodromus aberrans is a predatory mite species present in vineyards of South of France and also in uncultivated areas, from where great densities disperse into the neighbouring vine fields, mainly by aerial means. In order to determine the origin of migrants in an experimental vine plot, a molecular study using RAPD markers was performed. It was found that there exists genetic differentiation of populations collected in the experimental vineyard, and those collected, both from surrounding cultivated and uncultivated areas. No correlation between genetic and geographic distances was found. Thus, despite the dispersal of great densities of mites into the plot, selection pressures may affect their settlement. To determine the impact of pesticide application on mite settlement, we studied the insecticide resistance of K. aberrans populations collected in the vine field and on an oak located in a neighbouring uncultivated area. The insecticide tested, quinalphos, is the most frequently applied pesticide in the plot. High resistance levels were observed in both populations. However, at the recommended concentration, mortality rates (80 and 87 %) were quite the same for the two populations. Thus, the application of this pesticide seems not to be the major explanation of the poor settlement of migrants coming from woody areas into the plot, and other studies have to be conducted to determine other factors involved.

Résumé

Kampimodromus aberrans est l'espèce prédatrice la plus importante dans les vignobles du Sud de la France. Cette espèce se développe également dans les milieux non cultivés à partir desquels, des densités très importantes de cette espèce peuvent se disperser essentiellement par voie aérienne dans les parcelles de vigne avoisinantes. Afin de déterminer l'origine des individus migrants à l'intérieur d'une parcelle d'étude, un marquage moléculaire à l'aide de RAPD a été réalisé. Les populations collectées dans la parcellle expérimentale et dans son environnement cultivé et non cultivé présentent des profils génétiques très différents. Aucune corrélation entre les distances génétiques et les distances géographiques n'a été mise en évidence. Malgré la dispersion de densités importantes de K. aberrans à l'intérieur de la parcelle expérimentale, il semble que des pressions de sélection propres à chaque milieu déterminent la différenciation génétique des populations et l'installation de ces individus dans la parcelle. Afin de déterminer l'impact des pesticides sur cette installation, la résistance à un insecticide de différentes populations de K. aberrans collectées dans une zone non cultivée bordant la parcelle sur un chêne pubescent et dans une parcelle de vigne, a été étudiée. L'insecticide testé, quinalphos, est l'insecticide le plus fréquemment utilisé dans la parcelle d'étude. Les deux populations testées présentent des hauts niveaux de résistance. Cependant, à la dose homologuée, le taux de mortalité est quasiment identique pour les deux populations (80 et 87 %). L'application de ce pesticide ne semble donc pas être le facteur majeur permettant d'expliquer la mauvaise installation des individus se dispersant de la zone boisée avoisinantes dans la parcelle. D'autres études sont donc nécessaires afin de déterminer quels sont les autres facteurs permettant d'expliquant cette mauvaise installation.

Type
Research Articles
Copyright
Copyright © ICIPE 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbot, W.S. (1925) A method of computing the effectiveness of an insecticide, J. Econ. Entomol. 18, 265267.CrossRefGoogle Scholar
Abou-Setta, M.M., Childers, C.C., Denmark, H.A. and Browning, H.W. (1991) Comparative morphology reproductive compatibility between populations of Euseius mesembrinus (Acari: Phytoseiidae) from Florida and Texas. Exp. Appi. Acarol. 10, 213220.CrossRefGoogle Scholar
Altiéri, M.A. and Letourneau, D.K. (1982) Vegetation management and biological control in agroecosystems. Crop Protection 1, 405430.CrossRefGoogle Scholar
Black, W.C. (1995) Fortran programs for the analysis of RAPD-PCR markers in populations. Colorado State University, Ft Collins, CO 805523.Google Scholar
Boiler, E.F., Remund, U. and Candolfi, M.P. (1988) Hedges as potential sources of Typhlodromus pyri, the most important predatory mite in vineyards of northern Switzerland. Entomophaga 33, 249255.CrossRefGoogle Scholar
Castagnoli, M., Liguori, M. and Simoni, S. (1999) Effect of two different host plants on biological features of Neoseiuhis californiens (McGregor). Int. J. Acarol. 25, 145149.CrossRefGoogle Scholar
Coiutti, C. (1993) Acari Fitoseidi su piante arboree spontanee e coltivate in Friuli-Venezia Giulia. Frust. Entomol. 16, 6577.Google Scholar
Corino, L. (1989) Les acariens phytophages sur vigne en Italie: évolution des populations et équilibres naturels avec les acariens prédateurs. Proceedings of “colloque sur les acariens des cultures”, Montpellier, 24–26 octobre 1989. Ann. ANPP 2, 116123.Google Scholar
Croft, B.A. (1990) Arthropod Biological Control Agents and Pesticides. John Wiley & Sons Publishing. 723 pp.Google Scholar
Dennis, P. and Fry, G.L.A. (1992) Field margins: Can they enhance natural enemy population densities and general arthropod diversity on farmland? Agrie. Ecosyst. Environ. 40, 95115.CrossRefGoogle Scholar
Dennis, P., Thomas, M.B. and Sotherton, N.W. (1994) Structural features of field boundaries which influence the overwintering densities of beneficial arthropod predators, J. Appi. Ecol. 31, 361370.CrossRefGoogle Scholar
Duso, C. and Fontana, P. (1996) Mite communities on wild plants surrounding vineyards in North-Eastern Italy with special emphasis on phytoseiids (Phytoseiidae), pp. 261264. In Proceedings Acarology IX. Vol. 1. (Edited by Mitchell, R., Horn, D., Needham, G. and Welbourn, W.). Ohio Biological Survey Pub.Google Scholar
Duso, C., Torresan, L. and Vettorazzo, E. (1993) La vegetazione spontanea come riserva di aussilliari: considerazioni sulla diffusione degli Acari Fitoseidi (Acari: Phytoseiidae) in un vigneto e sulle piante spontanee contigue. Boll. Zool. Agr. Bach. 25, 183203.Google Scholar
Fauvel, G. and Cotton, D. (1981) Evolution des populations de typhlodromes, Amblyseius aberrans essentiellement, dans une haie d'ormes et un verger de pommiers et observations de leur transport par le vent, pp. 471479. In Proceedings “6e journée phytiatrie. Phytopharmacie. Circum méditerranéennes”. J. Coste ed. Technic Offset pub.Google Scholar
Hoying, S.A. and Croft, B.A. (1977) Comparisons between populations of Typhlodromus longipilus Nesbitt and T. occidentalis Nesbitt: Taxonomy, distribution and hybridization. Ann. Entomol. Soc. Am. 70, 150159.CrossRefGoogle Scholar
Ivancich Gambaro, P. (1973) Il ruolo del Typhlodromus aberrans Oudm. (Acarina: Phytoseiidae) nel controllo biologico degli acari fitofagi dei vigneti del Veronese. Boll. Zool. Agr. Bach. 2, 151165.Google Scholar
Kambhampati, S., Black, W.C. and Rai, K. S. (1992) Random amplified polymorphic DNA of mosquito species and populations (Diptera: Culicidae): Techniques, statistical, analysis and applications, J. Med. Entomol. 29, 939945.CrossRefGoogle Scholar
Krantz, G.W. (1973) Dissemination of Kampimodromus aberrans by the filbert aphid, J. Econ. Entomol. 66, 575576.CrossRefGoogle Scholar
Kreiter, S. and Sentenac, G. (1995) Gestion des populations d'auxiliaires: Recolonisation naturelle ou introduction de phytoséiides en vignobles, pp. 4963. In Proceedings “Journée d'informations sur les auxiliaires entomophages” (Edited by Leclant, F. and Reboulet, J.-N.). Valence 15/XI/1995, ANPP. Pub.Google Scholar
Kreiter, S., Sentenac, G., Weber, M. and Valentin, G. (1993) Les phytoséiides des vignobles français. Synthèse de huit années de recensement, pp. 597609. In Proceedings “Troisième conférence internationale sur les ravageurs en agriculture” (Edited by Leclant, F.). Montpellier 7–8-9/XII/1993, ANPP Pub.Google Scholar
Kreiter, S., Sentenac, G., Weber, M., Rinville, C., Barthes, D. and Auger, P. (1997) Effets non intentionnels de quelques produits phytopharmaceutiques sur Typhlodromus pyri, Kampimodromus aberrans et Phytoseius plumifer. Phytoma. La défense des végétaux 493, 5158.Google Scholar
Kreiter, S., Tixier, M.-S., Auger, P., Muckensturm, N., Sentenac, G., Doublet, B. and Weber, M. (2000) Phytoseiid mites in vineyards in France (Acari: Phytoseiidae). Acarologia 41, 7796.Google Scholar
Lester, P.J., Thistlewood, H.M.A. and Harmsen, R. (2000) Some effects of pre-release host-plant on the biological control of Panonychus ulmi by the predatory mite Amblyseius fallacis. Exp. Appi. Acarol. 24, 1933.CrossRefGoogle ScholarPubMed
Malison, M., Baldacci, R., Posenato, G. and Girolami, V. (1995) Frequency distribution of Kampimodromus aberrans (Oud.) (Acari: Phytoseiidae) in vineyards and optimization of the samplings methods. Frust. Entomol. 18, 153168.Google Scholar
McMurtry, J.A. and Croft, B.A. (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu. Rev. Entomol. 42, 291321.CrossRefGoogle ScholarPubMed
Moraes (de), G.J., McMurtry, J.A. and Denmark, H.A. (1986) A catalog of the mite family Phytoseiidae: references to taxonomy, synonymy, distribution and habitat. Embrapa-ddt-pub. 353 pp.Google Scholar
Munger, F. (1942) A method for rearing citrus thrips in the laboratory, J. Econ. Entomol. 35, 373375.CrossRefGoogle Scholar
Potter, C. (1952) An improved apparatus for applying direct sprays and surface films with data on the electrostatic charge on atomized spray fluids. Ann. Appi. Biol. 39, 128.CrossRefGoogle Scholar
Probit-Logit analysis® (1993) Probit analysis program. Analysis of mortality assays displaying quantal responses. 3e version. Praxeme, Montpellier, France.Google Scholar
Ragusa, S., Papaioannou-Souliotis, P., Tsolakis, H. and Tsagarakou, N. (1995) Acari fitoseidi (Parasitiformes, Phytoseiidae) della Grecia associati a piante forestall a diverse altitudini. Boll. Zool. Agr. Bach. 27, 8591.Google Scholar
Ragusa, S. and Tsolakis, H. (1996) A survey of phytoseiid mites (Phytoseiidae) associated with various plants in Sicily, pp. 253256. In Proceedings Acarology IX. (Edited by Mitchell, R., Horn, D., Needham, G. and Welbourn, W. ). Vol. 1. Ohio Biol. Survey pub, Columbus Ohio.Google Scholar
Roderick, G.K. (1992) Post-colonization evolution of natural enemies, pp. 7186. In Selection Criteria and Ecological Consequences of Importing Natural Enemies. (Edited by Kauffman, W.C. and Nechols, J.R.). T. Say Pub.Google Scholar
Roderick, G.K. (1996) Geographic structure of insect populations: Gene flow, phylogeography and their uses. Annu. Rev. Entomol. 41, 325352.CrossRefGoogle ScholarPubMed
Sabelis, M.W. (1985) Predator-prey interaction, pp. 103129. In Spider Mites: Their Biology, Natural Enemies and Control, vol. 18 (Edited by Helle, W. and Sabelis, M.W.). Elsevier pub.Google Scholar
Statistica5® (1998) Version 6.0. Statsoft, Inc., USA.CrossRefGoogle Scholar
Tixier, M.-S., Kreiter, S., Auger, P. and Weber, M. (1998) Colonization of Languedoc vineyards by phytoseiid mites (Acari: Phytoseiidae): Influence of wind and crop environment. Exp. Appi. Acarol. 22, 523542.CrossRefGoogle Scholar
Tixier, M.-S., Kreiter, S. and Auger, P. (2000) Colonization of vineyards by phytoseiid mites: Their dispersal patterns in the plot and their fate. Exp. Appi. Acarol. 24, 191211.CrossRefGoogle ScholarPubMed
Tixier, M.-S., Kreiter, S., Croft, B. A. and Auger, P. (2002) Colonization of vineyards by Kampimodromus aberrans (Oudemans) (Acari: Phytoseiidae): Dispersal from surrounding plants as indicated by random amplified polymorphism DNA typing. Agrie. For. Entomol. 255264.CrossRefGoogle Scholar
Tuovinen, T. (1993a) Identification and occurrence of phytoseiid mites (Gamasida: Phytoseiidae) in Finnish apple plantations and their surroundings. Entomol. Fenn. 31, 95113.CrossRefGoogle Scholar
Tuovinen, T. (1993b) Phytoseiid mites (Acari: Gamasina) in Finnish apple plantations with reference to integrated control of phytophagous. Agrie. Sci. Finland 2, 731.Google Scholar
Tuovinen, T. (1994) Influence of surrounding trees and bushes on the phytoseiid mites fauna on apple orchard trees in Finland agriculture. Agrie. Ecosyt. Environ. 50, 3947.CrossRefGoogle Scholar
Tuovinen, T. and Rokx, J.A.H. (1991) Phytoseiid mites (Acari: Phytoseiidae) on apple trees and in surrounding vegetation in Southern Finland. Densities and species composition. Exp. Appi. Acarol. 12, 3546.CrossRefGoogle Scholar