Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-30T19:38:22.870Z Has data issue: false hasContentIssue false

A Discriminant Function for the Short- and Long-Setaed Forms of the Mononychellus (Acari: Tetranchidae) Species Complex

Published online by Cambridge University Press:  19 September 2011

Sagary Nokoe
Affiliation:
The International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi, Kenya
Lucie M. Rogo
Affiliation:
The International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi, Kenya
Get access

Abstract

A function for distinguishing between the long, intermediate and short-setaed forms of Mononychellus species complex is described. The results show that the dorsal-central body setae, variable D3, with a discriminant correlation coefficient of 0.99, was the most important variable. Five other variables, lengths of dorso-central body setae Dl, D2, laterals LI, L2 and propodosomal P2, which had significant discriminant correlations (0.28 to 0.35) with the function were, however, included in the discriminant function.

Résumé

La fonction décrite permet la distinction des formes à soies longues courtes ou intermédiaires des espèces du complexe Mononychellus. Les résultats prouvent que la soie dorso-médiane (variable D3) est de loin la plus importante, avec un coefficient de correlation discrimante de 0,99. Cinq autres variables-Dl, D2, Latérales Ll et L2 et propodosomale P2-présentant des coefficients de correlation discriminante significatifs (0,28 à 0,35) n'ont néanmoins pas été inclus dans la fonction.

Type
Research Article
Copyright
Copyright © ICIPE 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blackith, R. E. (1960) A synthesis of multivariate techniques to distinguish patterns of growth in grasshoppers. Biometrics 16, 2840.CrossRefGoogle Scholar
Blackstone, N. W. (1986) Relative growth and specific growth rates in crustaceans. Growth 50, 118127.Google ScholarPubMed
Blackstone, N. W. (1987) Allometry and relative growth: pattern and process in evolutionary studies. Syst. Zool. 36, 7678.Google Scholar
Doreste, E. (1982) Acaros del genero Mononychellus Wainstein (Acari: Tetranchidae) associades con la yuca (Manihot spp.) en Venezuela. Biol. Ent. Venezolana, N.S. 1, 119130.Google Scholar
Jensen, D. R. and Howe, R. B. (1968) Tables of Hotellings T 2 distribution. Virginia Polytechnic Institute Technical Report No. 9. (March 1968).Google Scholar
Kramer, C. Y. (1972) A First Course in Methods of Multivariate Analysis. Virginia Polytechnic Institute and State Univ. Press, Blacksburg.Google Scholar
Legendre, L. and Legendre, P. (1983) Numerical Ecology: Developments in Environmental Modelling 3. Elsevier Scientific Pub. Co., New York.Google Scholar
Morrison, D. F. (1976) Multivariate Statistical Methods. 2nd edition, McGraw Gill, New York.Google Scholar
Olson, E. C. and Miller, R. L. (1958) Morphological Integration. Univ. Chicago Press, Chicago.Google Scholar
Rao, C. R. (1952) Advanced Statistical Methods in Biometric Research. John Wiley & Sons, New York.Google Scholar
Rogo, L. M., Flechtmann, C. H. W. and Doreste, E. (1987) A preliminary study of the taxonomic status of cassava green spider mite complex, Mononychellus spp. (Acari: Tetranchidae). Insect Sci. Applic. 8, 1113.Google Scholar