Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T08:33:39.506Z Has data issue: false hasContentIssue false

Bioenergetics and growth of the fall armyworm, Spodoptera litura (F.) larvae reared on four host plants

Published online by Cambridge University Press:  19 September 2011

T. C. Banerjee
Affiliation:
Department of Zoology, Burdwan University, Burdwan-713 104, West Bengal, India
D. Ray
Affiliation:
Department of Zoology, Burdwan University, Burdwan-713 104, West Bengal, India
Get access

Abstract

Bioenergetica, efficiencies of energy transfer and growth of Spodoptera litura larvae reared on mulberry, cabbage, castor and wild hempweed leaves were determined using calorimetrie procedures. Energy contents (J mg−1 ash-free tissue) of castor leaves were higher than those of cabbage, mulberry and wild hempweed. Fresh leaves had slightly higher energy contents than those left over. The rates of ingestion and egestion of food energy increased linearly with the age of larvae. Energy consumption decreased exponentially with larval age, and this decreasing trend showed an intermediate rise at the fifth instar. Assimilation efficiencies were highest and lowest for the first and sixth instar larvae respectively. Efficiencies of gross and net larval production showed linear increases with instar stage, except at the fifth instar which showed dramatic declines in conversion of ingested and assimilated energy into insect biomass. Efficiencies of gross and net productions during early first to third instars were low, but those during the sixth instar were high. The pathways of energy transfer indicated that an average of 58.5% of the total energy ingested was lost directly through faeces, respiration and exuviae, while about 42.2% of the total energy ingested was actually converted into growth of an S. litura larva.

Résumé

La bioénergétique, les efficiences de transfert d'énergie et la croissance des larves de Spodoptera litura élevées sur des feuilles de mûrier, de choux, de ricin et de chanvre sauvage respectivement ont été determinées par des procédés calorimétriques. Les teneurs en énergie (J mg−1 du tissu sans cendre) des feuilles du ricin étaient supérieres à celles du choux, du mûrier et du chanvre sauvage. Les feuilles offertes à l'état frais avaient des teneurs en énergie légèrement supérieures à celles des reliquats. Les taux d'énergie d'ingestion et d'éjection de nourriture augmentait linéairement avec l'âge des larves. L'énergie de consommation décroissait exponentiellent avec l'âge des larves et cette tendence de décroissance présentait une augmentation intermédiare au cinquième stade. Les efficiences d'assimilation avaient les valeurs les plus élevées au premier stade et les plus basses au sixième stade. Les efficiences de production brute et nette du stade larvaire présentaient des taux de croissance linéaires avec le stade, sauf le cinquième stade avec des baisses formidables dans la conversion d'énergie ingérée et assimillée en biomasse de l'insect. Les efficiences de production brute et nette étaient basses du premier au troisième stade mais elles étaient élevées au cours du sixième stade. Les voies de transfert d'énergie ont montré qu'en moyenne 58.5% de l'énergie totale ingérée était directent perdue en fèces, en respiration et en exuvies; cependant environ 42.2% de l'énergie total ingérée était convertie en croissance chez une larve de S. litura.

Type
Research Articles
Copyright
Copyright © ICIPE 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ali, A., Luttrell, R. G. and Schneider, J. C. (1990) Effects of temperature and larval diet on development of the fall army worm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 83, 725733.CrossRefGoogle Scholar
Banerjee, T. C. and Haque, N. (1984) Dry-matter budgets for Diacrisia casignetum larvae fed on sunflower leaves. J. Insect Physiol. 30, 861866.CrossRefGoogle Scholar
Banerjee, T. C. and Haque, N. (1985) Influence of host plants on development fecundity and egg hatchability of the arctiid moth Diacrisia casignetum. Entomol. exp. appl. 37, 193198.CrossRefGoogle Scholar
Campbell, A., Singh, N. B. and Sinha, R. N. (1976) Bioenergetics of the granary weevil Sitophilus granarius (L.) (Coleoptera: Curculionidae). Can. J. Zool. 54, 786798.CrossRefGoogle Scholar
Duncan, A. and Klekowski, R. Z. (1975) Parameters of an energy budget, pp. 97147. In Methods for Ecological Bioenergetics (Edited by Grodzinski, W., Klekowski, R. Z. and Duncan, A.). Blackwell Scientific Publications, Oxford.Google Scholar
Duodu, Y. A. and Biney, F. F. (1981) Growth, food consumption and food utilization of Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) on four food plants. Bull. entomol. Res. 71, 655662.CrossRefGoogle Scholar
Hill, D. S. (1983) Agricultural Insect Pests of the Tropics and Their Control. Cambridge University Press.Google Scholar
Hogg, D. B., Pitre, H. N. and Anderson, R. E. (1982) Assessment of early season phenology of the fall armyworm (Lepidoptera: Noctuidae) in Mississippi. Environ. Entomol. 11, 705710.CrossRefGoogle Scholar
Hubbell, S. P. (1971) Of sowbugs and systems: The ecological bioenergetics of a terrestrial isopod, pp. 269324. In System Analysis and Simulation in Ecology (Edited by Patten, B. C.)CrossRefGoogle Scholar
Jalali, S. K., Singh, S. P. and Ballal, C. R. (1987) Role of the host plants of S. litura (Fabricius) on the degree of parasitism by Cotesia marginiventris (Cresson) (Hymenoptera: Braconidae). Indian J. Agric. Sci. 57, 676678.Google Scholar
Mahapatra, A. K. and Banerjee, T. C. (1990) Bioenergetics of Argina cribraria (Clerk) larvae fed on sunnhemp leaves. Indian J. Exp. Biol. 28, 771775.Google Scholar
Martin, M. M. and Van't Hof, H. M. (1988) The cause of reduced growth of Manduca sexta larvae on a low-water diet: Increased metabolic processing costs or nutrient limitation? J. Insect Physiol. 34, 515525.CrossRefGoogle Scholar
Muthukrishnan, J. and Pandian, T. J. (1987) Insecta, pp. 373511. In Animal Energetics—Protozoa through Insecta (Edited by Pandian, T. J. and Vernberg, F. John). Academic Press, London.CrossRefGoogle Scholar
Petrusewicz, K. and Macfadyen, A. (1970) Productivity of Terrestrial Animals—Principles and Methods. IBP Handk. No. 13. Blackwell Scientific Publications, Oxford.Google Scholar
Phillipson, J. (1964) A miniature bomb calorimeter for small biological samples. Oikos 15, 130139.CrossRefGoogle Scholar
Prasad, J. and Bhattacharya, A. K. (1975) Growth and development of Spodoptera littoralis (Boisd.) on several plants. Z. angew. Entomol. 79, 3448.CrossRefGoogle Scholar
Prasad, D. and Chand, P. (1980) Consumption and utilization of various food plants by Diacrisia obliqua (Walker). Indian J. Ent. 42, 192196.Google Scholar
Prus, T. (1975) Methods for Ecological Bioenergetics, pp. 149160 (Edited by Gordzinski, W., Klekowski, R. E. and Duncan, A.). Blackwell Scientific Publications, Oxford.Google Scholar
Ray, D. and Banerjee, T. C. (1993) Bionomics and feeding capabilities of Spodoptera litura (Fabr.) (Lepidoptera: Noctuidae). Phytophaga 5, 5162.Google Scholar
Reese, J. C. and Beck, S. D. (1978) Inter-relationships of nutritional indices and dietary moisture in the black cutworm Aqrotis ipsilon digestive efficiency. J. Insect Physiol. 24, 473479.CrossRefGoogle Scholar
Schroeder, L. A. (1973) Energy budget of the larvae of the moth Pachysphimx modesta. Oikos 24, 278281.CrossRefGoogle Scholar
Schroeder, L. A. (1977) Distribution of caloric densities among larvae feeding on black cherry tree leaves. Oecologia 29, 219222.CrossRefGoogle ScholarPubMed
Scriber, J. M. (1977) Limiting effects of low leaf water content on the nitrogen utilization, energy budget and larval growth of Hyalophora cecropia (Lepidoptera: Saturniidae). Oecologia 28, 269287.CrossRefGoogle ScholarPubMed
Scriber, J. M. (1984) Larval food plant utilization by the world Papilionidae (Lepidoptera): Latitudinal gradients reappraised. Tokurana (Acta Rhopalocerologica) 2, 150.Google Scholar
Scriber, J. M. and Slansky, F. Jr, (1981) The nutritional ecology of immature insects. Annu. Rev. Entomol. 26, 183211.CrossRefGoogle Scholar
Slansky, F. Jr, (1978) Utilization of energy and nitrogen by larvae of the imported cabbage-worm Pieris rapae as affected by parasitism by Apanteles glomeratus. Environ. Entomol. 7, 179185.CrossRefGoogle Scholar
Slansky, F. Jr, and Feeny, P. (1977) Stabilization of the rate of nitrogen accumulation by larvae of the cabbage butterfly on wild and cultivated food plants. Ecol. Monographs 47, 209228.CrossRefGoogle Scholar
Soo, Hoo C. F. and Fraenkel, G. (1966) The consumption, digestion and utilization of food plants by apolyphagous insect Prodenia eridenia (Cramer). J. Insect Physiol. 12, 711730.CrossRefGoogle Scholar
Timmins, W. A., Bellward, K., Stamp, A. J. and Reynolds, S. E. (1988) Food intake, conversion efficiency and feeding behaviour of tobacco hornworm caterpillars given artificial diet of varying nutrient and water content. Physiol. Entomol. 13, 303314.CrossRefGoogle Scholar
Tohiuddin, G., Ray, D. and Banerjee, T. C. (1993) Energy reserves of adult pulse beetle Callosobruchus chinensis (Coleoptera: Bruchidae) reared on seeds of gram Cicer arietinum. Indian J. agric. Sci. 63, 181185.Google Scholar
Van't Hof, H. M. and Martin, M. M. (1989) The effect of diet water content on energy expenditure by third-instar Manduca sexta larvae (Lepidoptera: Sphingidae). J. Insect Physiol. 35, 433436.CrossRefGoogle Scholar
Waldbauer, G. P. (1968) The consumption and utilization of food by insects. Adv. Insect Physiol. 5, 229269.CrossRefGoogle Scholar