Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-07T21:06:40.029Z Has data issue: false hasContentIssue false

Amylase activity in the gut homogenate of the kola weevil, Sophrorhinus insperatus Faust and its response to inhibitors from kola nuts

Published online by Cambridge University Press:  19 September 2011

C. O. Adedire*
Affiliation:
Department of Zoology, Obafemi Awolowo University, Ile-Ife, Nigeria
R. A. Balogun
Affiliation:
Department of Zoology, Obafemi Awolowo University, Ile-Ife, Nigeria
*
* Address for correspondence: Department of Biology, Federal University of Technology, P.M.B. 704, Akure, Nigeria.
Get access

Abstract

Some properties of the gut amylase of Sophrorhinus insperatus Faust have been studied. The enzyme has maximum activity at pH 5.0 and 45°C. It is activated by C, Ca2+ and Cd2+ tons and inhibited by Cu2+ and Hg2+ lons. Low Michaelis constants of 0.26 mg/ml and 032 mg/ml were obtained for the larva and adult gut amylases. Enzymatic activity was found to be consistently higher in the larva than in adult stage, probably suggesting the larval stage as the most destructive stage. Extracts of Cola nitida (Vent) Schott and Endlicher and C. acuminata (Pal de Beauv) Schott and Endlicher, inhibited amylase activity in vitro at varying magnitudes. The higher level of inhibitors in C. acuminata is an index of its low susceptibility to weevil attack both on the field and at storage.

Résumé

Quelques propriétes d'amylase de I'intestin du Sophrorhinus insperatus Faust ont été étudiées. L'activité optimum de l'enzyme se presente au pH 5.0 et à la temperature de 45°C. II a été active par ces ions: Cl, Ca2+ et Cd2+ et, on l'a fait emp^cher par ces ions: Cu2+ et Hg2+. Les petites constantes de Michaelis, obtenues pour la larve et le grand intestin amylacé étaient respectivement 0.26 mg/ml et 032 mg/ml. On a constaté que le régime d'activité de l'enzyme était beaucoup plus prononcé pour la larve qu'à l'était plus âgé.

Cet éffet nous à faire deduire que l'état de la larve est l'état le plus destructif. Les extraits de Cola nitida (Vent) Schott et Endlicher, et C. acuminata (Pal de Beauv) Schott et Endlicher empêchaient l'activité in vitro aux dégrés divers. L'éffet des empecheurs était prononcé en C. acuminata et ceci signifie qu'il est peu susceptible de l'effet du charançon au chantier et à l'emmagasinage.

Type
Research Articles
Copyright
Copyright © ICIPE 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adedire, C. O. and Balogun, R. A. (1990) Qualitative survey of digestive enzymes in gut and salivary glands of the kola weevil, Sophrorhinus insperatus Faust (Coleoptera: Curculionidae). Ife J. Sci. (In Press).CrossRefGoogle Scholar
Alibert, H. et Mallamaire, A. (1955) Les charaçons de la noix de cola en Afrique; Moyens de le combattre. Bull. Prof. Veg. Gouv. Gen. Occ. Franc. Dir. Gen. Serv. Econ. Insp. Gen. Agric. 29, 6988.Google Scholar
Applebaum, S. W., Jankovic, M. and Birk, Y. (1961) Studies on the midgut amylase activities of Tenebrio molitor L. larvae. J. Insect Physiol. 7, 100108.CrossRefGoogle Scholar
Applebaum, S. W. and Konijn, (1965) The utilization of starch by larvae of the flour beetle, Tribolium castaneum. J. Nutr. 85, 275282.CrossRefGoogle ScholarPubMed
Applebaum, S. W. (1985) Biochemistry of digestion. In Comprehensive Insect Physiology, Biochemistry and Pharmacology. (Edited by Kerkut, G. A. and Gilbert, L. I.), pp. 279311. Pergamon Press.Google Scholar
Baker, J. E. (1983) Properties of amylases from midguts of larvae of Sitophilus zeamais and Sitophilus granarius. Insect Biochem. 13940, 421428.CrossRefGoogle Scholar
Baker, J. E., Woo, S. M. and Byrd, R. V. (1984) Ultrastructural features of the gut of Sitophilus granarius (L.) (Coleoptera: Curculionidae) with notes on distribution of proteinases and amylases in crop and midgut. Can. J. Zool. 62, 12511259.CrossRefGoogle Scholar
Balogun, R. A. (1972) Digestive carbohydràses and the nature of amylase in the gut of Zonocerus variegatus L. Bull. Entomol. Soc. Niger. 3, 9194.Google Scholar
Beattie, G. B. (1970) Soft Drink Flavours: Their History and Characteristics — J. Cola or “Kola” Flavours. The Flavours Industry, pp. 390394.Google Scholar
Buonocore, V., Poerio, E., Silano, V. and Tomasi, M. (1976) Physical and catalytic properties of α-amylase from Tenebrio molitor L. larvae. Biochem. J. 153, 621625.CrossRefGoogle ScholarPubMed
Daramola, A. M. (1973) The bionomics of the kola weevils, Sophrorhinus spp. (Coleoptera: Curculionidae). Ph.D. Thesis, University of Ibadan, Nigeria.Google Scholar
Day, M. F. and Powning, B. F. (1949) A study of the process of digestion in certain insects. Aust. J. Sci. Res. (B)2, 175215.Google Scholar
Gerard, B. M. (1967) The control of Balanogastris kolae (Debsr.) and Sophrorhinus insperatus (Fst) (Coleoptera: Curculionidae) in small samples of stored kola nuts using phosphine. Bull. Entomol. Soc. Niger. 1, 4348.Google Scholar
Gilmour, D. (1961) The Biochemistry of Insects. Academic Press, New York and London.Google Scholar
Hoorn, A. J. W and Scharloo, W. (1978) The functional significance of amylase polymorphism in Drosophila melanogaster I. Properties of two amylase variants. Genetics 49, 173180.Google Scholar
Hori, K. (1972) Comparative study of a property of salivary amylase among various heteropterous insects. Comp. Biochem. Physiol. 42B, 501508.Google Scholar
House, H. L. (1974) Digestion. In The Physiology of Insecta (Edited by Rockstein, M.), 2nd Edition, Vol. V, pp. 63117. Academic Press, New York.CrossRefGoogle Scholar
Ishaaya, I., Holmstead, R. L. and Casida, J. E. (1977) Triphenyl derivatives of group IV elements as inhibitors of growth and digestive enzymes of Tribolium castaneum larvae. Pestic. Biochem. Physiol. 7, 573577.CrossRefGoogle Scholar
Ishaaya, I., Moore, I. and Joseph, D. (1971) Protease and amylase activity in larvae of the Egyptian cotton worm, Spodoptera littoralis. J. Insect Physiol. 17, 945953.CrossRefGoogle Scholar
Ishaaya, I. and Swirski, E. (1970) Invertase and amylase activity in the armoured scales Chrysomphalus aonidum and Aonidiella auranti. J. Insect Physiol. 16, 15991606.CrossRefGoogle Scholar
Ito, T., Mukaiyama, F. and Tanaka, M. (1962) Some properties of digestive juice and blood of larvae of the silkworm, Bombyx mori L. J. Sericult. Sci. Japan 32, 228234.Google Scholar
Lamborn, W. A. (1914) The agricultural pests of the southern provinces, Nigeria. Bull. Entomol. Res. 5, 197214.CrossRefGoogle Scholar
Noelting, G. and Bernfeld, P. (1948) Sur les enzymes amylolytiques II. La B-amylase: Dosage d'activitdé et control de l'absence d' α-amylase. Helv. Chim. Acta. 31, 286290.CrossRefGoogle Scholar
Patterson, W. H. (1912) Report of the Entomologist. Rep. Agric. Dept., Accra, Gold Coast 1912, 2225.Google Scholar
Podoler, H. and Applebaum, S. W. (1971) The αamylase of the beetle, Callosobruchus chinensis: properties. Biochem. J. 121, 321325.CrossRefGoogle Scholar
Robyt, J. F. and Whelan, W. J. (1968) The αamylases. In Starch and its Derivatives (Edited by Radsley, J. A.), pp. 430470. Chapman and Hall, London.Google Scholar
Terra, W. R., Ferreira, C. and De Bianchi, A. G. (1977) Action pattern, kinetical properties and electrophoretical studies on an alpha-amylase present in midgut homogenates from Rhynchosciara americana (Diptera) larvae. Comp. Biochem. Physiol. 56B, 201209.Google Scholar
Whelan, W. J. (1958) Starch and similar polysaccharides. Handbuch der Pflanzenphysiologie (Edited by Ruhland, W.), Vol. 6, pp. 154240. Springer, Berlin.Google Scholar