Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T20:54:30.384Z Has data issue: false hasContentIssue false

Action of juvenile hormone and ecdysone in the metamorphic endocrine centres

Published online by Cambridge University Press:  19 September 2011

Mamdouh H. Idriss
Affiliation:
Department of Plant Protection, Faculty of Agriculture, University of Alexandria, Alexandria, Egypt
Get access

Abstract

The relationship between corpus allatum (CA) and prothoracic gland (PG) activities has been examined during postfeeding larval and prepupal stages of en-silkworm, Philosamia ricini (Dru.). Using the isolated larval abdomen technique, the critical period of ecdysone (MH) was determined. It was 114 hr immediately after the beginning of cocoon spinning at 20 ± 2°C. To study the CA activity a histometric method was used. CA volumes suddenly increased at the prepupal stage. From these data a clear positive correlation between CA and PG activities was recognized.

Brainless Ph. ricini pupae, a highly reliable bioassay organism for detecting prothoracicotropic (PTTH)-like effects, were produced. The debraination of Ph. ricini larvae after the critical period of PTTH, produced brainless pupae. This bioassay organism was used for studying the action of juvenile hormone (JH) and MH in the metamorphic endocrine centres during the absence of the brain.

Injection of 5 μg altozar (JHA) into debrained Ph. ricini larvae accelerated pupation (12.24 ± 0.36 instead of 16.51 ± 0.19 days). Moreover the produced brainless pupae moulted to second brainless pupae. The injection of 5 μg JHA into brainless pupae or isolated larval abdominae of Ph. ricini did not show any effects. Brainless Ph. ricini moths were obtained after injecting the brainless pupae with MH (10 μg-40 μg/p). The injection of high concentrations of MH (≥ 70 μg/p) into brainless pupae activated the CA and produced pupal-adult intermediates. The present data reveal that the PTTH at low concentrations, permits the action of a JHA in the PG. Also it shows that the MH at high levels activates the CA.

Résumé

La relation entre les activités de corpus allatum (CA) et celles de la glande prothoracique (PG) a été étudiée durant les stades larvaires (la période post nutritive larvaire) ainsi que le stade prepupal du vers à soie de ricin Philosamia ricini (Dru). En utilisant la technique d'abdomaines larvaires isolés, il a été possible de l'ecdysone (MH), comme étant de 114 hrs immédiatement après le commençement de la filature du coccon á la température de 20 ± 2°C le volume de CA a augmenté soudainement au stade previrginal.

De ces derniers résultâts l'on peut déduire une claire correlation des activités de CA et PG.

Il a été possible de produire des pupes du vers a soie de Ricin Ph. ricini sans cerveau. Ces dernières représentent un organisme pour éssais biologiques auquels on peut faire hautement confiance, pour la détection de l'activité de l'hormone qui influe sur la glande prothoracique (PTTH). Les larves dont on a enlevé le cerveau après la periode critique de secretion de PTTH, ont produit des pupes sans cerveau. Cet organisme de bioéssais a été utilisé pour l'étude de l'action de l'hormone juvenile (JH) et MH dans les centres endocriniens métamorphiques durant l'abscence du cerveau.

L'injection de 5μg d'Altozar (JHA) a des larves decervelés (dont on a enlevé le cerveau) de Ph. ricini, a accéléré la transformation en pupe (12.24 ± 0.36 au lieu 16.51 ± 0.19 jours). Et qui plus est la production de pupe sans cerveau ont mue en seconde pupe sans cerveau. L'injection de 5 μg JHA á des pupes sans cerveau ou á des abdomaines larvaires isolés de Ph. ricini, n'a donné aucun résultat. Après l'infection des pupes décervelés avec MH (10 μg–40 μg/p) des papillons de Ph. ricini dans cerveau ont émergés. L'infection de hautes concentrations de (MH ≥ 100 μg/p) á des pupes sans cerveau, a activé le CA et a produit des individus intermédiaires pupe-adultes, les présentes résultâts ont révéle que PTTH a de basses concentrations a permis l'action de JHA sur la glande prothoracique PG. Il est aussi évident que le MH a de hautes concentrations active le CA.

Type
Research Articles
Copyright
Copyright © ICIPE 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bollenbacher, W., Katahira, E., O'Brien, M., Gilbert, L., Thomas, M., Agui, N. and Baumhover, A. (1984) Insect prothoracicotropic hormones. Evidence for two molecular forms. Science 224, 12431245.CrossRefGoogle ScholarPubMed
Bollenbacher, W. E., Smith, S. L., Goodman, W. and Gilbert, L. (1981) Ecdysteroid ti treduring larval-pupal-adult development of the tobacco hornworm Manduca sexta. Gen. Comp. Endocrinol. 44, 302306.CrossRefGoogle Scholar
Bryan, M. D., Brown, T. M. and Monroe, R. (1974) Effect of ecdysterone on ethyl trimethyl dodecadienoate juvenile hormone action Oncopeltusfasciatus. J. Insect Physiol. 20, 10571062.CrossRefGoogle Scholar
Cymborowski, B. and Stolarz, G. (1979) The role of juvenile hormone during larval-pupal transformation of Spodoptera litloralis: Switch over in the sensitivity of the prothoracic glands to juvenile hormone. J. Insect Physiol. 25, 939942.CrossRefGoogle Scholar
De Wilde, J. and Stegwee, D. (1958) Two major effects of CA in the adult colorado beetle. Arch Need. Zool. 1, 277289.Google Scholar
Gilbert, L. (1962) Maintenance of the prothoracic gland by the juvenile hormone in insects. Nature, London 193, 12051207.CrossRefGoogle Scholar
Gilbert, L. and King, D. S. (1973) Physiology of growth and development: endocrine aspects. In Physiology of Insecia (Edited by Rockstein, M.), pp. 249370. Academic Press, N.Y.CrossRefGoogle Scholar
Gomma, A. (1973) Biological studies on the eri silkworm A. ricini. Z. Angew. Entomol. 74, 120126.CrossRefGoogle Scholar
Gruetzmacher, M., Gilbert, L., Granger, N., Goodman, W. and Bollenbacher, W. (1984) The effect of juvenile hormone on prothoracic gland function during the larval-pupal development of Manduca sexta: An in situ and in vitro analysis. J. Insect. Physiol. 30, 331340.CrossRefGoogle Scholar
Fukuda, D. (1940) Induction of pupation in silkworm by transplanting the prothoracic gland. Proc. Imp. Acad. Japan 16, 417420.Google Scholar
Hiruma, K. (1980) Possible roles of ju venue hormone in the prepupal stage of Mamestra brassicae. Gen. Comp. Endocrinol. 41, 392399.CrossRefGoogle Scholar
Hiruma, K. and Agui, N. (1982) Larval-pupal transformation of the prothoracic glands of Mamestra brassicae. J. Insect Physiol. 28, 8995.CrossRefGoogle Scholar
Hiruma, K., Shimada, H. and Yagi, N. (1978) Activation of the prothoracic gland by juvenile hormone and prothoracicotropic hormone in Mamestra brassicae. J. Insect Physiol. 24, 215220.CrossRefGoogle Scholar
Huber, R. and Hoppe, W. (1965) Zur chemie des Ecdysons. VII. Die Kristallund Molekulstrukturanalyse des insektenver-puppungs hormons Ecdyson mit der automatisierten Flatmolekulmethode. Chem. Ber. 98, 24032424.Google Scholar
Idriss, M. (1986) Prothoracicotropic hormone: an overview, 6th Int. Congr. Pestic. Chem. Canada 2B-10.Google Scholar
Idriss, M. (1988) The prothoracic gland activities during the last larval instar of lepidopterous insects. Pestic. Sci. 23, 358362.Google Scholar
Idriss, M. and Abdelatif, M. (1982) Detection of juvenile hormone activity from invertebrate and vertebrate tissues by using the scoring assay of Philosamia ricini pupae. Proc. 2nd Egyptian-Hungarian Conf. Plant Prot. pp. 7890.Google Scholar
Idriss, M., Elgayar, F. and Rawash, I. (1981) Operated Philosamia ricini and Bombyx mori larvae as a brain hormone bioassay test organisms. Z. Angew. Entomol. 92, 371374.Google Scholar
Idriss, M., Sherby, S., Morshedy, M. and Mansour, N. (1984) Prothoracicotropic hormone-like effects of biogenic amines in lepidopterous larvae. In Insect Neurochemistry and Neurophysiology (Edited by Borkover, A. and Kelly, T.), pp. 385387. Plenum Press, N.Y.Google Scholar
Krishnakumaran, A. and Schneiderman, H. (1963) Brain hormone activity of certain terpene derivatives in insects. Am. Zool. 3, 532.Google Scholar
Krishnakumaran, A. and Schneiderman, H. (1965) Prothoracotrophic activity of compounds that mimic juvenile hormone. J. Insect Physiol. 11, 15171532.CrossRefGoogle ScholarPubMed
Legay, J. M. (1950) Note sur l'evolution des corpora allata au cours de vie larvaire de Bombyx mori. C. R. Soc. Biol., Paris 144, 512513.Google Scholar
Lezzi, M. and Wyss, C. (1976) The antagonism between juvenile hormone and ecdysone. In The Juvenile Hormones (Edited by Gilbert, L.), pp. 252269. Plenum Press, N.Y.CrossRefGoogle Scholar
Novak, V. J. A. (1966) Insect hormones. First edition. Methuen & Co. Ltd.Google Scholar
Pflugfelder, O. (1948) Volumetrische Untersuchungen an den corpora allata der Honigbiene Apis mellifica. Biol. Zentralbl. 66, 211235.Google Scholar
Röller, H., Dahm, K. H., Sweeley, C. and Trost, C. (1967) The structure of juvenile hormone. Angew. Chem. Int. Ed. Engl. 6, 179180.CrossRefGoogle Scholar
Safranek, L., Cymborowski, B. and Williams, C. (1980) Effectsof juvenile hormone on ecdysone-dependent development in the tobacco hornworm, Manduca sexta. Biol. Bull. Mar. Biol. Lab Woods Hole 158, 248256.CrossRefGoogle Scholar
Schneiderman, H. and Gilbert, L. (1964) Control of growth and development in insects. Science N.Y. 143, 325333.CrossRefGoogle ScholarPubMed
Silhacek, D. L. and Oberlander, H. (1975) Time dosage studies of juvenile hormone action on the development of Plodia interpunctella. J. Insect Physiol. 21, 153162.CrossRefGoogle ScholarPubMed
Socha, R. and Sehnal, F. (1972) Inhibition of adult development in Tenebria molitor by insect hormones and antibiotics. J. Insect Physiol. 18, 317337.CrossRefGoogle Scholar
Socha, R. and Sehnal, F. (1973) Inhibition of insect development by simultaneous action of prothoracic gland hormone and juvenile hormone. J. Insect Physiol. 19, 14491454.CrossRefGoogle Scholar
Wigglesworth, V. B. (1936) The function of the corpus allatum in the growth and reproduction of Rhodnius prolixus. Q. J. Microsc. Sci. 79, 91119.Google Scholar
Williams, C. (1952) Physiology of insect diapause. IV—The brain and prothoracic glands as an endocrine system in the Cecropia silkworm. Biol. Bull. Woods Hole, 103, 120138.Google Scholar
Williams, C. M. (1959) The juvenile hormone I endocrine activity of the adult Cecropia silkworm. Biol. Bull. Mar. Biol. Lab. Woods Hole 116, 323338.CrossRefGoogle Scholar
Williams, C. (1968) Ecdysone and ecdysone-analogues. Their assay and action on diapausing pupa of ihe Cynthia silkworm. Biol.Bull. Woods Hole 134, 344355.Google Scholar
Willis, J. and Hollowell, M. (1976) The interaction of juvenile hormone and ecdysone: antagonistic, synergistic or permissive. In The Juvenile Hormones (Edited by Gilbert, L.), pp. 270287. Plenum Press, N.Y.Google Scholar
Yagi, S. (1976) The role of juvenile hormone in diapause and phase variation in some lepidopterous insects. In The Juvenile Hormones (Edited by Gilbert, L.), pp. 288300, Plenum Press, N.Y.Google Scholar