Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T08:17:59.407Z Has data issue: false hasContentIssue false

Y-autosome genetic sexing strain of Anopheles albimanus (Diptera: Culicidae)

Published online by Cambridge University Press:  19 September 2011

Titus K. Mukiama
Affiliation:
Department of Botany, University of Nairobi, P.O. Box 30197, Nairobi, Kenya
Get access

Abstract

Stripe (st+) is a dominant trait on chromosome 3R in region 33B on the cytological chromosome map of Anopheles albimanus. It is expressed as a white longitudinal stripe in fourth stage larvae and pupae, and marks a Y-autosome translocation stock T(Y; 3R)3. Pseudolinkage analysis of the available markers to the translocation breakpoint showed complete absence of recombinant progeny between T(Y;3R)3 and st+. The two loci most likely either overlap or are very closely linked. This translocation strain can be genetically sexed by selection of the stripe marker.

Résumé

Stripe (st+) est un caractère dominant localise sur le chromosome 3R de la region 33B de la carte chromosomique de Anopheles albimanus. Ce caractère s'exprime comme une bande blanche longitudinale dans les larves et pupae du/quatrième étage et correspond a une souche T(Y;3R)3 caractérisée par une translocation Y-autosomique. Une analyse pseudoliaison entre les marqueurs disponibles et le point de rupture de la translocation a montre une absence complete de descendance recombinante entre T(Y; 3R)3et st+. Les deux loci sont probablement superposes ou lier tres étroitement. Le sexe de la souche transloquée/peut être determine génétiquement par selection du marqueur stripe.

Type
Articles
Copyright
Copyright © ICIPE 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asman, S. M., McDonald, P. T. and Prout, T. (1981) Field studies of genetic control systems for mosquitoes. A. Rev. Ent. 26, 289318.CrossRefGoogle ScholarPubMed
Ayala, F. J., Powell, J. R., Tracey, M. L., Mourao, C. A. and Peres-Salas, S. (1972) Enzyme variability in the Drosophila willistoni group. IV. Genetic variation in natural populations of Drosophila willistoni group. Genetics. 70, 113139.CrossRefGoogle ScholarPubMed
Baker, R. H., Sakai, R. K. and Saifuddin, U. T. (1978) Genetic sexing technique for a mosquito sterile male release. Nature. 274, 253255.CrossRefGoogle Scholar
Baker, R. H., Sakai, R. K. and Raana, K. (1981) Genetic sexing for the mosquito sterile male release. J. Hered. 72, 216218.CrossRefGoogle ScholarPubMed
Curtis, C. F. (1978) Genetic sex separation in Anopheles arabiensis and the production of sterile hybrids. Bull. Wld Hlth Org. 56, 453454.Google ScholarPubMed
Curtis, C. F., Akiyama, J. and Davidson, G. (1976) A genetic sexing system in Anopheles gambiae species A. Mosquito News 36, 493498.Google Scholar
Foster, G. C., Whitten, M. J., Prout, T. and Gill, R. (1972) Chromosome rearrangements for the control of insect pests. Science 176, 875880.CrossRefGoogle ScholarPubMed
International Atomic Energy Agency (1983) Report on research coordination meeting on the development of sexing mechanisms in fruit flies through manipulation of radiation-induced lethals and other genetic means, pp. 1617. Vienna, Austria.Google Scholar
Kaiser, P. E., Seawright, J. A., Dame, D. A. and Joslyn, D. J. (1978) Development of a genetic sexing system for Anopheles albimanus. J. econ. Ent. 71, 766771.CrossRefGoogle Scholar
Kaiser, P. E., Seawright, J. A. and Joslyn, D. J. (1979) Cytology of a genetic sexing system in Anopheles albimanus. Can. J. Genet. Cytol. 21, 201211.CrossRefGoogle Scholar
Keppler, W. J. Jr, Kitzmiller, J. B. and Rabbani, M. G. (1973) The salivary gland chromosomes of Anopheles albimanus. Mosquito News 33, 4249.Google Scholar
McDonald, I. C. (1971) A male-producing strain of the housefly. Science. 172, 489.CrossRefGoogle Scholar
Narang, S. and Seawright, J. A. (1983a) Genetic mapping and characterisation of aldehyde oxidase of Anopheles albimanus (Diptera: Culicidae). Biochem. Genet. 21, 653660.CrossRefGoogle ScholarPubMed
Narang, S. and Seawright, J. A. (1983b) Genetic and phsyio-chemical studies on β-hydroxy acid dehydrogenase in Anopheles albimanus. Biochem. Genet. 21, 885893.CrossRefGoogle ScholarPubMed
Narang, S., Seawright, J. A. and Joslyn, D. J. (1981) Inheritance and mapping of hexokinase-1 and phos-phoglucomutase in Anopheles albimanus. Mosquito News 41, 99106.Google Scholar
Narang, S., Seawright, J. A. and Willis, N. L. (1984) Assignment of glutamate oxaloacetate transaminase to chromosome 2 and alcohol dehydrogenase to chromosome 3 of Anopheles albimanus. Can. J. Genet. Cytol. 26, 590594.CrossRefGoogle Scholar
Rabbani, M. G. and Kitzmiller, J. B. (1972) Chromosomal translocations in Anopheles albimanus Wiedemann. Mosquito News. 32, 421432.Google Scholar
Rabbani, M. G. and Seawright, J. A. (1976) Use of Y-autosome translocations in assigning the stripe locus to chromosome 3 in the mosquito Anopheles albimanus. Ann. ent. Soc. Am. 69, 266268.CrossRefGoogle Scholar
Robinson, A. S. and Heemert, C. van (1981) Genetic sexing in Drosophila melanogasler using the alcohol dehydrogenase locus and a Y-linked translocation. Theoret. appl. Genet. 59, 2324.CrossRefGoogle Scholar
Robinson, A. S. and Heemert, C. van (1982) Ceratitis capitata, a suitable case for genetic sexing. Genetica. 58, 229237.CrossRefGoogle Scholar
Rossler, Y. (1979) Automated sexing of Ceratitis capitata (Diptera: Tephritidae): the development of strains with inherited, sex-limited pupal color dimorphism. Ento-mophaga. 24, 411416.Google Scholar
Seawright, J. A., Haile, D. G., Rabbani, M. G. and Weidhaas, D. E. (1979) Computer simulation of the effectiveness of male-linked translocations for the control of Anopheles albimanus Wiedemann. Am. J. trop. Med. Hyg. 28, 155160.CrossRefGoogle ScholarPubMed
Seawright, J. A., Kaiser, P. E. and Narang, S. (1981a) Chromosome manipulation studies of Anopheles albimanus for genetic control. In Cytogenetics and Genetics of Vectors (Edited by Pal, R., Kitzmiller, J. B. and Kanda, T.), pp. 249261. Elsevier Biomedical, New York.Google Scholar
Seawright, J. A., Kaiser, P. E., Suguna, S. G. and Focks, D. A. (1981b) Genetic sexing strains of Anopheles albimanus Wiedemann. Mosquito News. 41, 107114.Google Scholar
Seawright, J. A., Benedict, M. Q., Suguna, S. G. and Narang, S. (1982) Redeye and vermillion eye, recessive mutants on the right arm of chromosome 2 in Anopheles albimanus. Mosquito News 42, 590593.Google Scholar
Steiner, W. W. M. and Joslyn, D. J. (1979) Electrophoretic techniques for the genetic study of mosquitoes. Mosquito News. 39, 3554.Google Scholar
Whitten, M. J. (1969) Automated sexing of pupae and its usefulness in control by sterile insects. J. econ. Ent. 62, 272273.CrossRefGoogle Scholar
Whitten, M. J., Foster, G. C., Arnold, J. T. and Konowalow, C. (1975) The Australian sheep blowfly, Lucila cuprina. In Handbook of Genetics, Vol. 3, Invertebrates of Genetic Interest (Edited by King, R. C.), pp. 401–118.Google Scholar
Willis, N. L., Smittle, B. J. and Seawright, J. A. (1980) A genetic sexing system for Stomoxys calcitrans. Proceedings of the Florida Anti-Mosquito Association, 51st Meeting Vol. 51, pp. 5254.Google Scholar