Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T12:01:36.512Z Has data issue: false hasContentIssue false

ULV Application to a Tree Crop Canopy: Evaluation of Physical Performance and Penetration

Published online by Cambridge University Press:  19 September 2011

Kwame Afreh-Nuamah
Affiliation:
International Pesticide Application Research Centre, Imperial College at Silwood Park, Ascot, Berkshire SL5 7P
E. W. Thornhill
Affiliation:
International Pesticide Application Research Centre, Imperial College at Silwood Park, Ascot, Berkshire SL5 7P
Get access

Abstract

Spray distribution in an apple tree canopy using an adapted knapsack mistblower fitted with a spinning disc, with the provision of an induced electrostatic charge on the droplets was studied.

Droplets were sampled using uvitex fluorescent tracer on Kromekote cards positioned in different areas of the canopy.

Droplets were highest on the outer surface and decreased sharply into the canopy. Uncharged spray droplets gave the poorer deposition with better distribution, but by adding an electrostatic charge, droplet deposition was significantly improved in the outer parts of the canopy. An average of 3 ml/tree of spray liquid was used in all applications. The larger variety (Red Victoria) required about 50% more spray liquid, but distribution was still lower than that achieved by the smaller Keswick variety.

Résumé

Une étude a été faite sur la distribution dans la pulvérisation de la cime d'un pommier en utilisant un pulvérisateur à dos adapté, avec un gicleur ayant un aménagement pour l'induction de charges électro-statiques des gouttelettes.

Les gouttelettes ont été analysées à l'aide d'un tracer fluorescent Uvitex sur des cartes kromekote positionées dans des places différentes de la cime du pommier.

La déposition qui était plus supérieure dans la surface extérieure décroissait brusquement dans la surface intérieure de la cime. Les gouttelettes non-chargées malgré leur faibre déposition avaient la meilleure distribution. Cependant, par le rajout des charges électro-statique, la déposition des gouttelettes était amméliorée d'une manière remarquable dans les parties extérieures de la cime du pommier. En moyenne, 3 ml/arbre de solution étaient utilisés dans toute les application. Les arbres connaissaient une baisse progressive de pulvérisation, et en conséquence, une faibre déposition, sur charque unité de surface des feuilles au fur et à mesure que l'étendue de la cime ou la taille de l'arbre accroissaient, cette déposition, par contre, étaint presque nulle dans les parties selon qu'ils soient loin ou qu'ils soient protégés du pulvériseur.

Type
Research Article
Copyright
Copyright © ICIPE 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afreh-Nuamah, K. (1987) Spray distribution in a tree crop. Ph.D. thesis University of London.Google Scholar
Afreh-Nuamah, K. and Matthews, G. A. (1987) Comparative spray distribution in a tree crop with 3 different spray nozzles. Aspects of appl. Biol. 14, 7783.Google Scholar
Allen, J. G., Austin, D. J., Swait, A. A. T. and Warmah, T. M. (1983) Experience with a hand held ULV charged-drop sprayer on fruit. Proceedings 10th International Congress of Plant Protection 2, 501.Google Scholar
Amsden, R. C. (1962) Reducing the evaporation of spray. Agric. Aviat. 4, 8893.Google Scholar
Barrat, R. E., Mass, J. L., Retzer, H. J. and Adams, R. E. (1981) Comparisons of spray droplet size, pesticide deposition and drift with ultra low volume, low volume and dilute pesticide application on apple. Plant Diseases 65, 872875.Google Scholar
Coffee, A. A. (1979) Electrodynamic energy—a new approach to pesticide application. Proceedings British Crop Protection Council Conference—Pests and Diseases 3, 777789.Google Scholar
Coffee, A. A. (1980) Electrodynamic spraying. British Crop Prot. Coun. Monogr. 24, 95107.Google Scholar
Cooke, B. K., Herrington, P. J., Jones, K. G. and Morgan, N. G. (1976) Spray deposit cover and fungicides distribution obtained by low volume spraying of intensive apple trees. Pestic. Sci. 7, 3540.CrossRefGoogle Scholar
Cooke, B. K., Herrington, P. J., Jones, K. G. and Morgan, N. G. (1977) Progress towards economical and precise top fruit spraying. Proceedings 1977 British Crop Protection Council Conference—Pests and Diseases 2, 323329.Google Scholar
Endacott, C. J. (1983) Non-target organism mortality—a comparison of spraying techniques. Proceedings 10th International Congress of Plant Protection 2, 502.Google Scholar
Hislop, E. C. (1983) Methods of droplet production in relation to pesticide deposition and biological efficacy in cereals and tree crops. Proceedings 10th International Congress of Plant Protection 2, 469477.Google Scholar
Law, S. E. and Bowen, H. D. (1966) Charging liquid spray by electrostatic induction. Transactions of the American Society of Agricultural Engineers 9, 501506.Google Scholar
Matthee, F. N., Thomas, A. C., Schwaebe, W. F. S. and Nel, E. W. (1976) Control of apple mildew (Podosphaera leucotricha) by applying low and ultra low volume sprays. Deciduous Fruit Growers 24, 174179.Google Scholar
Morgan, N. G. (1974) Some biological requirements in the ULV spraying of top fruit. British Crop Prot. Court. Monogr. II.Google Scholar
Munthali, D. C. and Wyatt, I. T. (1986) Factors affecting the biological efficiency of small droplets or solution and consideration of the implication. Pestic. Sci. 13, 6062.CrossRefGoogle Scholar
Pye, B. J. (1983) Application techniques to increase crop penetration of charged sprays. Proceedings 10th International Congress of Plant Protection 2, 504.Google Scholar
Omar, D. and Matthews, G. A. (1987) Biological efficiency of spray droplets of permethrin ULV against the diamond back moth. Aspects Appl. Biol. 14, 173179.Google Scholar