Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-18T11:22:45.907Z Has data issue: false hasContentIssue false

Species composition, feeding and resting behaviour of the common anthropophilic anopheline mosquitoes in relation to malaria transmission in Gambella, south west Ethiopia

Published online by Cambridge University Press:  19 September 2011

Wondatir Nigatu
Affiliation:
National Research Institute of Health, P.O. Box 1242, Addis Ababa, Ethiopia
Beyene Petros
Affiliation:
Department of Biology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
Mesfin Lulu
Affiliation:
National Research Institute of Health, P.O. Box 1242, Addis Ababa, Ethiopia
Nesibu Adugna
Affiliation:
National Research Institute of Health, P.O. Box 1242, Addis Ababa, Ethiopia
Robert Wirtz
Affiliation:
Department of Entomology, Walter Reed Army Institute of Research, Washington D.C. 20307–5100
Get access

Abstract

Species composition and behavioural patterns were determined for anopheline mosquito samples collected between October and September 1990, from Gambella region, south west Ethiopia. At least eight anopheline species, which differed in their habits, were found to be prevalent in the region. Findings of indoor-resting collection and hut density determinations showed the relative prevalence, in decreasing order of magnitude, to be Anopheles pharoensis, A. gambiae s.l., A. nili, A. coustani, and A. ziemanni. On the other hand, the relative frequency of occurrence based on outdoor human-bait capture was A. pharoensis, A. ziemmani, A. coustani, A. squamosus, A. paludis and A. funestus, in decreasing order of importance. The rate of human feeding of A. nili, A. gambiae s.l., A.pharoensis and A. coustani were 37.5, 33.0, 22.5 and 6.7%, respectively. Among the endophilic mosquitoes assayed, the overall infectivity rate was found to be 0.56%. Sporozoite rates of 0.77% for A. gambiae s.l. and 0.47% for A. pharoensis were determined.

Résumé

La composition de l'espèce et les types de comportement chez les echantillons de moustiques anophelines collectionnés entre octobre et septembre 1990 dans la région de Gambella, Sud-ouest de l'Ethiopie, ont été déterminés. Au moins huit espèces d'anopheline, qui différaient en habitudes étaient fréquentes dans la région. Les résultats des collections des moustiques a l'intérieur et de la détermination de leur densité dans les huttes ont montré que la fréquence relative, en décadence, était: Anopheles pharoensis, A. gambiae s.l., A. nili, A. coustani, et A. ziemanni. D'autre part, la fréquence relative basée sur des collections extérieure selon l'appât humain etait A. pharoensis, A. ziemanni, A. coustani, A. squamosus, A. paludis et A. funestus, en order de déclin. Le taux de A. nili, A. gambiae s. l., A. pharoensis et A. coustani se nourrissant sur l'humain etait, respectivement, 37.5%, 33.0%, 22.5% et 6.7%.

Parmiles moustiquesqui préféraient l'intérieure, létaux d'infection était, en général de 036%. Des taux de sporozoites de 0.77% pour A. gambiae et de 0.47% pour A. pharoensis ont été determinés.

Type
Research Articles
Copyright
Copyright © ICIPE 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armstrong, J. C. (1972) Evaluation of the results of an indirect hemagglutination test for malaria in an Ethiopian population. Paper presented at the proceedings of the Helminthological Society of Washington. 39, 545553.Google Scholar
Assefa, T. (1987) A case of Plasmodium falciparum infection resistant to chloroquine. Ethiop. Med. J. 25, 209210.Google ScholarPubMed
Beier, J. C., Perkins, P. V., Wirtz, R. A., Koros, J., Diggs, D., Gargan, T. P. II and Koech, D. K. (1988) Bloodmeal identification by direct enzyme-linked immunosorbent assay (ELISA), tested on Anopheles (Diptera: Culcidae) in Kenya. J. Med. Entomol. 25, 916.CrossRefGoogle Scholar
Bruce-Chwatt, L. J., Garret-Jones, C. and Weitz, B. (1966) Ten years study (1955–1964) of host selection by anopheline mosquitoes. Bull. W.H.O. 35, 405439.Google Scholar
Burkot, T. R., Williams, J. L. and Schneider, I. (1984) Identification of Plasmodium falciparum infected mosquitoes by a double antibody enzyme-linked immunosorbent assay. Am. J. Trop. Med. Hyg. 33, 783788.CrossRefGoogle ScholarPubMed
Chandler, J. A., Boreham, P. F. L., Higton, R. B. and Hill, M. N. (1975) A study of the host selection patterns of the mosquitoes of the Kisumu area of Kenya. Trans. R. Soc. Trop. Med. Hyg. 69, 415425.Google Scholar
Covell, G. (1957) Malaria in Ethiopia. J. Trop. Med. & Hyg. 60, 716.Google Scholar
Fontaine, R. E., Najjar, A. E. and Prince, J. S. (1961) The 1958 malaria epidemic in Ethiopia. Amer. J. Trop. Med. Hyg. 10, 795803.Google Scholar
Garret-Jones, C. (1964) The human blood index of malaria vectors in relation to epidemiological assessment. Bull. W.H.O. 30, 241261.Google Scholar
Gebremariam, N. (1988) Malaria. In The Ecology of Health and Disease in Ethiopia (Edited by Zein, A. Z. and Kloos, H.). EMPDA Press, Addis Ababa. Pp. 136150.Google Scholar
Gillies, M. T. and de Meillon, B. (1968) The Anophelinae of Africa South of the Sahara (Ethiopian Zoogeographical Region) 2nd ed.Johannesburg: Publ. South African Institute for Medical Research No. 54.Google Scholar
Krafsur, E. S. (1970) Anopheles nili as a vector of malaria in a lowland region of Ethiopia. Bull. W.H.O. 42, 466471.Google Scholar
Krafsur, E. S. (1971) Malaria transmission in Gam bella, Illubabor Province. Ethiop. Med. J. 9, 7594.Google Scholar
Krafsur, E. S. and Armstrong, J. C. (1978) An integrated view of entomological and parasitological observations on falciparum malaria in Gambella. Trans. R. Soc. Trop. Med. Hyg. 72, 348356.CrossRefGoogle Scholar
Melville, A. R., Wilson, D. B., Glasgow, J. P. and Hocking, K. S. (1945) Malaria in Abyssinia. East African Med. J. 22, 285.Google ScholarPubMed
Nigatu, W., Abebe, M. and Dejene, A. (1992) Plasmodium vivax and P. falciparum epidemiology in Gambella, South-West Ethiopia. Trop. Med. Parasitol. 43, 181185.Google ScholarPubMed
O'connor, C. T. (1967) The distribution of anopheline mosquitoes in Ethiopia. Mosquito News 27, 4254.Google Scholar
Seulu, F., Ameneshewa, B. and Abose, T. (1989) Seasonal prevalence and behavioural patterns of malaria vectors in Baro Abol, Gambella, Southwest Ethiopia. Proceedings of the 9th Annual Meeting of the Committee of Ethiopian Entomologists, pp. 97118.Google Scholar
Teklehaimanot, A. (1986) Chloroquine resistant Plasmodium falciparum malaria in Ethiopia. Lancet 2, 127129.Google Scholar
Verron, G. A. (1962) Outline for the determination of malarial mosquitoes in Ethiopia. I—Adult female anophelines. Mosquito News 22, 3749.Google Scholar
Wirtz, R. A., Burkot, T. R., Ander, R. G., Rosenberg, R., Collins, W. E. and Roberts, D. R. (1985) Identification of Plasmodium vivax sporozoites in mosquitoes using an enzyme-linked immunosorbent assay. Am. J. Trop. Med. Hyg. 34, 10481054.CrossRefGoogle ScholarPubMed
Wirtz, R. A. (1988) ELISA kits for detection of Plasmodium falciparumand P. vivax sporozoites in infected mosquitoes. WRAIR, Washington, D. C. pp. 19.Google Scholar
World Health Organisation (1963) Terminology of Malaria and Malaria Eradication. Report of a drafting committee, Geneva.Google Scholar