Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T10:35:45.658Z Has data issue: false hasContentIssue false

Response of western flower thrips, Frankliniella occidentals and its predator Amblyseius cucumeris to chrysanthemum volatiles in olfactometer and greenhouse trials

Published online by Cambridge University Press:  19 September 2011

M. Manjunatha
Affiliation:
Department of Entomology, University of Agricultural Sciences, Dharwad-580 005, India
J. A. Pickett
Affiliation:
Department of Biological and Ecological Chemistry, Institute of Arable Crops Research Rothamsted, Herts AL 5 2JQ, United Kingdom
L. J. Wadhams
Affiliation:
Department of Biological and Ecological Chemistry, Institute of Arable Crops Research Rothamsted, Herts AL 5 2JQ, United Kingdom
F. Nazzi
Affiliation:
Dipartmento Di Biologia Appl. Alla Difesa Dellt Plant Univ. Di Uding V. Delle Scienze 208330100, Italy
Get access

Abstract

In olfactometer assays, the predatory mite Amblyseius ciicumeris (Oudemans) recorded a significantly higher response to volatiles from chrysanthemum, Denranthemct morifolium plants infested with western flower thrips (WFT), Frankliniella occidentalis (Pergande) than to volatiles from healthy plants. This increased attraction was attributed to the presence of higher amounts of Germacrene-D in WFT-infested plants. In choice experiments using synthetic volatiles, the predator remained longer in the olfactometer treated with 50 ng Germacrene-D and made many entries at 500 mg.

Preferential attraction of WFT to healthy chrysanthemum flower buds was observed, and attributed to the significantly higher amounts of (E)-β-farnesene found in the buds compared to leaves and open flowers. This attraction peaked at 100 ng/μl (E)-β-famesene. In greenhouse experiments, blue sticky traps with 500 ng (E)-β-farnesene or 1000 mg p-anisaldehyde attracted 32.3% and 27.5% more WFT than the untreated controls, respectively.

The prospects of using Germacrene-D in improving the attraction of A.cucumeris to whole chrysanthemum plants and (E)-β-farnesene in monitoring WFT, are discussed.

Résumé

Au cours des essais olfactométriques, l'acarien prédateur, Ambiyseius cucumeris (Oudemans) a montré une réponse très significative à l'égard des substances volatiles provenant d'un chrysanthème infesté par le trips occidental de fleurs, FranklinieUa occidentalis (Pergande), en comparaison des substances obtenues des plantes saines. Ce pouvoir attractif plus accru a été attribué aux concentrations très élevées de Germacrène-d dans les plantes infestées par ce trips. Dans des essais avec des volatiles synthétiques pour déceler le comportement de l'acarien, on a remarqué que le prédateur restait longtemps dans l'olfactomètre traité avec 50 ng de Germacrène-d et qu'il effectuait plusieurs entrées quand ce traitement était de 500 mg. Une attractivité préférentielle du trips par les boutons floraux était observée et elle fut attribuée à des hautes teneurs de (E)-β-farnesene contenues plus dans les boutons floraux que dans les feuilles ou les fleurs écloses. Ce pouvoir attractif atteignait le pic à la concentration de 100 ng/μl de (E)-β-farnesene. Au cours des expériences en serre, des pièges adhésifs bleus traités soit avec 500 ng de (E)-β-farnesene ou avec 1000 mg de p-anysaldéhyde attiraient respectivement 32,3% et 27,5% de trips de plus, en comparaison des témoins non traités. Les perspectives d'utilisation de Germacrène-d pour améliorer l'attraction de A. cucumeris par la plante entière de chrysanthème et l'emploi de (E)-β-farnesene dans le suivi de la dynamique du trips des fleurs sont discutées.

Type
Research Articles
Copyright
Copyright © ICIPE 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blight, M. M. (1990) Techniques for isolation and characterization of volatile semiochemicals of phytophagous insects, pp. 281288. In Chromatography and Isolation of Insect Hormone and Pheromones (Edited by McCafferey, A. R. and Wilson, I. D.). Plenum Press, New York.CrossRefGoogle Scholar
Brodsgaard, H. F. (1989) Coloured sticky traps for Frankliniella occidentalis (Pergande) (Thysanoptera, Thripidae) in glasshouses. J. Appl. Ent. 107, 136140.CrossRefGoogle Scholar
Cochran, W. G. and Cox, G. M. (1989) Experimental Designs 2nd edition. Wiley Publications in Statistics 611 pp.Google Scholar
Dicke, M. and Sabelis, N. W. (1988) How plants obtain predatory mites as body guards. Netherlands J. Zool. 38, 148165.CrossRefGoogle Scholar
Hollander, M. and Wolfe, P. A. (1973) Non Parametric Statistical Methods. J. Wiley and Sons, New York.Google Scholar
McMurtry, J. A. and Scriven, G. T. (1965) Insectary production of phytoseiid mites. J. Econ. Ent. 58, 282284.CrossRefGoogle Scholar
Nault, L. R. and Bowers, W. S. (1974) Multiple alarm pheromones in aphids. Ent. Exp. Appl. 17, 455457.CrossRefGoogle Scholar
Pettersson, J. (1970) An aphid sex attractant. Entomol. Scand. 1, 6373.Google Scholar
Pickett, J. A. (1990) Gas chromatography mass spectrometry in pheromone identification-three extreme case histories, pp. 299309. In Chromatography and Isolation of Insect Hormones and Pheromones (Edited by McCaffery, A. R. and Wilson, I. D.). Plenum Press, New York.CrossRefGoogle Scholar
Vet, L. E. M. and Dicke, N. (1992) Ecology of infochemical used by natural enemies in a tritrophic context. Ann. Rev. Ent. 37, 141172.Google Scholar