Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T03:01:19.216Z Has data issue: false hasContentIssue false

Quantitative patterns of some hydrolytic enzymes during the development of polyphenic forms of Lipaphis erysimi (Kalt.) (Aphididae)

Published online by Cambridge University Press:  19 September 2011

Pushpinder J. Rup
Affiliation:
School of Life Sciences, Guru Nanak Dev University, Amritsar-143005, India
Parvinder K. Kalra
Affiliation:
School of Life Sciences, Guru Nanak Dev University, Amritsar-143005, India
Get access

Abstract

The development of phase phenism in L. erysimi involved function related changes in the activity of hydrolytic enzymes. The esterase activity decreased from first to third instar and then increased in the fourth instar and adults. The decrease in the third and the increase from fourth instar up to adults was more in alatae than apterae. The acid phosphatase activity was maximum in second instar. It decreased in the third and then increased again in the fourth instar and adults. The increase was more in alatae than in apterae. The alkaline phosphatase showed a similar trend but was in contrast to acid phosphatase and showed low activity in alatae as compared to apterae.

Résumé

Le developpement de la phase du phenisme chez Lipaphis erysimi involvant des fonctions qui sont en relation avec les changements des activités des enzymes hydrolitiques fut analysé. L'activité de l'esterase decrût du 1 er au 3 ème et puis accrût du 4 ème stage larvaire au stage adulte. Cette activité ètait importante chez les aphides ayant des ailes que ceux sans ailes. L'activite de la phophatase (acide) etait maximale chez les larves du second stage larvaire, elle decrut au 3 ème et accrut au 4ème stage larvaire et les adultes. L'accroissement de cette enzyme fut élève chez les aphides avec ailes que chez les sans ailes. La phosphatase (alcaline) montra une tendance similaire mais en contrast a la phosphatase (acide) son activité etait plus faible chez les aphides avec ailes que chez ceux sans ailes.

Type
Research Articles
Copyright
Copyright © ICIPE 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berger, E. and Canter, R. (1973) The esterases of Drosophila (Dip., Drosophilidae). I. The anodal esterases and their possible role in eclosion. Dev. Biol. 33, 4855.CrossRefGoogle Scholar
Brown, J.J., Chippendale, G.M. and Turunen, S. (1977) Larval esterases of the south western corn borer, Diatraea grandiosella: Temporal changes and specificity. J. Insect Physiol. 23, 12551260.Google Scholar
Castanera, P., Loxdale, H.D. and Nowak, K. (1983) Electrophoretic study of enzymes from cereal aphid populations. 2. Use of electrophoresis for identifying aphidiid parasitoids (Hymenoptera) of Sitobion avenae (Hemiptera: Homoptera: Aphididae). Bull. Entomol. Res. 73, 659666.CrossRefGoogle Scholar
Castillon, M.P., Catalan, R.E., Vega, S. and Municio, A.M. (1973) Biochemistry of the insects Dacus oleae and Ceratitis capitata. Changes of cholinesterases and triglyceride hydrolyzing enzyme. Comp. Biochem. Physiol. 44, 639646.Google Scholar
Dhand, R.K. and Rastogi, S.C. (1975) Acid and alkaline phosphatase activity in relation to egg laying and aging in Callosobruchus analis (Fab.) (Coleoptera: Bruchidae). Can. J. Zool. 53, 15001504.Google Scholar
Haque, M.S. (1977) Total alkaline phosphatase during development of Kerria lacca (Kerr.). Ind. J. Entomol. 39, 201204.Google Scholar
Hardie, J. and Lees, A.D. (1985) Endocrine control of polymorphism and polyphenism. In Comprehensive Insect Physiology, Biochemistry and Pharmacology (Edited by Kerkut, G.A. and Gilbert, L.I.), Vol. 8, pp. 441490. Pergamon Press, Oxford.Google Scholar
Katzenellenbogen, B. and Kafatos, F.C. (1971) General esterases of silkmoth moulting fluid: Preliminary characterization. J. Insect Physiol. 17, 11391151.CrossRefGoogle Scholar
Maclntyre, R.J. (1971) A method for measuring activities of acid phosphatases separated by acrylamide gel electrophoresis. Biochem. Genet. 5, 4550.CrossRefGoogle Scholar
Nath, J. and Butler, L. (1971) Acid phosphatase during development of black carpet beetle, Attagenus megatoma (Fab.). Can. J. Biochem. 49, 311315.CrossRefGoogle ScholarPubMed
Nath, J. and Butler, L. (1973) Alkaline phosphatase during development of the black carpet beetle. Ann. Entomol. Soc. Am. 66, 280284.CrossRefGoogle Scholar
Parkash, R., Jain, S. and Badam, R. (1983) Genetic and development analysis of phosphatases in Drosophila species hybrids. Proc. Ind. Nat. Sci. Acad. 49, 221230.Google Scholar
Parisi, G., Santoro, P. and Pizza, C. (1983) Ontogeny of α and β esterases in Drosophila melanogaster. Bull. Soc. Ital. Biol. Sper. 59, 322327.Google ScholarPubMed
Pasteur, N. and Kastritsis, C.D. (1971) Developmental studies in Drosophila. I. Acid phosphatases, esterases and other proteins in organs and whole fly homogenates during development of D. pseudoobscura. Dev. Biol. 26, 525536.CrossRefGoogle ScholarPubMed
Phokela, A., Saxena, H.P. and Mehrotra, K.N. (1983) Kinetic studies on carboxylesterases (EC 3.1.1.1) from the aphids, Aphis craccivora Koch, and Lipaphis erysimi (Kalt.). J. Entomol. Res. 5, 1624.Google Scholar