Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-07T18:40:11.918Z Has data issue: false hasContentIssue false

Prospects for Innovative Tick Control Methods in Africa

Published online by Cambridge University Press:  19 September 2011

Godwin P. Kaaya
Affiliation:
Department of Biology, University of Namibia, Private Bag 13301, Windhoek, Namibia
Get access

Abstract

Ticks, and the diseases they transmit, are of great economic and medical importance worldwide, and especially in Africa, where they are considered to be the greatest animal disease problem. The four major genera of ticks are Amblyomma, Rhipicephalus, Hyalomma and Boophilus. Ticks harm their animal hosts by sucking their blood thus reducing growth rate and milk yield, cause mechanical damage to hides and skins causing tick worry, introduce toxins and predispose the animals to myasis. Theileriosis, cowdriosis and dermatophilosis are the major tick-borne and tick-associated diseases of grazing cattle in Africa. The conventional method of tick control is the application of chemical acaricides, but it is associated with a number of problems including environmental pollution, chemical residues in meat and milk products as well as in wool, development of tick resistance and high cost. Some of the alternatives to chemical control of ticks that are available in Africa are discussed in this paper.

Résumé

Les tiques et les maladies qu'elles transmettent sont d'une grande importance économique et médicale dans le monde, et plus particulièrement en Afrique, où elles sont considérées comme le principal problème sanitaire du bétail. Les quatre principaux genres de tiques sont Amblyomma, Rhipicephalus, Hyalomma et Boophilus. Les tiques nuisent à la santé de leur hôte en suçant leur sang, ce qui se traduit par une réduction du taux de croissance et de la production laitière. Ils sont responsables d'altérations du cuir et de l'épiderme provoquant des lésions, injectent des toxines et prédisposent les animaux aux myases. La theilériose, la cowdriose et la dermatophilose sont les principales maladies des animaux de pâturage transmises par les tiques en Afrique. La méthode traditionnelle de contrôle des tiques est l'application d'acaricides chimiques mais elle s'accompagne de nombreux effets secondaires, parmi lesquels une pollution de l'environnement, la présence de résidus chimiques dans la viande et le lait ainsi que dans la laine, le développement de résistance chez les tiques et un coût élevé. Quelques unes des alternatives au contrôle chimique des tiques disponibles en Afrique sont présentées dans cette publication.

Type
Research Articles
Copyright
Copyright © ICIPE 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ascher, K. R. S (1993) Non-conventional insecticidal effects of pesticides available from the neem tree, Azadirachta indica. Arch. Insect Biochem. Physiol. 22, 433449.CrossRefGoogle Scholar
Attwell, R.I.G. (1966) Oxpeckers and their association with mammals in Zambia. Puku 4, 1748.Google Scholar
Backer, G.L., Milner, R. J., Lutton, G.G. and Watson, D.M. (1994) Preliminary field trial on the control of Phaulacridium uittatum Sjostedt (Orthoptera: Acrididae) populations with Metarhiziumflavoviride Gams and Rozsypal (Deuteromycotina: Hyphomycetes). J. Austr. Entomol. Soc. 33, 190192.CrossRefGoogle Scholar
Barci, L.A.G. (1997) Biological control of the cattle tick Boophilus microplus (Acari: Ixodidae) in Brazil. Arg. Inst. Biol. 64, 95101.Google Scholar
Bezuidenhout, J.D. and Stutterheim, C.J. (1980) A critical evaluation of the role played by the red-billed oxpecker Buphagus erythrorynchus in the biological control of ticks. Onderstepoort J. Vet. Res. 54, 525528.Google Scholar
Bowman, J.L., Logan, T.M. and Hair, J.A. (1986) Host Suitability of Ixodiphagus texanus Howard on five species of hard ticks, J. Agrie. Entomol. 3, 19.Google Scholar
Chiera, J.W., Newson, R. M. and Maradufu, A. (1977) Antitick properties of molasses grass, Melinis miniitiflora. ICIPE Fifth Annu. Rep.Google Scholar
Cole, M.M. (1965) Biological control of ticks by the use of hymenopterous parasites—a review. WHO/EBL/ 43.65, pp. 112.Google Scholar
Correia, A. B. C, Fiorin, A. C., Monteiro, A. C. and Verissimo, C. J. (1997) Effects of Metarhizium mtisopliae on the tick Boophilus microplus (Acari: Ixodidae) in stabled cattle. J. Invertebr. Pathol. 71, 189191.CrossRefGoogle Scholar
Couto, J.T. (1994) Operation oxpecker. The Farmers, pp. 1011.Google Scholar
Dipeolu, O. O. (1982) The acaricides being marketed in Nigeria and the status of resistance of Nigerian ticks to them. Report of Commissioned Research to the Federal Livestock Department of Nigeria.Google Scholar
Dipeolu, O.O. and Ndungu, J.N. (1991) Acaricidal activity of “Kupetaba”, a ground mixture of natural products against Rhipicephalus appendiculatus. Vet. Parasitol 38, 327338.CrossRefGoogle ScholarPubMed
Fargues, J. and Remaudiere, G. (1977) Consideration on the specificity of entomopathogenic fungi. Mycopathologia 62, 3141.CrossRefGoogle Scholar
Georgis, R. (1990) Formulation and application technology, pp. 173191. In Entomopathogenic Nematodes in Biological Control. (Edited by Gaugler, R. and Kaya, H.K.). CRC Press, Boca Raton, Fla.Google Scholar
Grobler, J.H. (1979) The re-introduction of oxpeckers Buphagus africanus and B. erythrorynchus to Rhodes Matopos National Park, Rhodesia. Biol. Con. 15, 151— 158.CrossRefGoogle Scholar
Hassan, S. M., Dipeolu, O. O., Amoo, A. O. and Odhiambo, T. R. (1991) Prédation on livestock ticks by chickens. Vet. Parasitol. 38, 199204.CrossRefGoogle ScholarPubMed
Hassan, S. M., Dipeolu, O. O. and Munyinyi, D. M. (1992) Influence of exposure period and management methods on the effectiveness of chickens as predators of ticks infesting cattle. Vet. Parasitol. 43, 301309.CrossRefGoogle ScholarPubMed
Hassan, S.M. and Dipeolu, O.O. (1993) Livestock tick prédation by chickens: The rate of digestion of ticks in the alimentary tract of chickens. Biocontr. Sci. Technol. 3, 7983.CrossRefGoogle Scholar
Hu, R., Hyland, K.E. and Oliver, J.H. (1998) A review on the use of Ixodiphagus wasps (Hymenoptera: Encyrtidae) as natural enemies for the control of ticks (Acari: Ixodidae). System. Appi. Acarol. 3, 1928.Google Scholar
Kaaya, G. P. and Hassan, S.M. (2000) Entomogenous fungi as promising biopesticides for tick control. Exp. Appi. Acarol. 24, 913923.CrossRefGoogle Scholar
Kaaya, G. P. (2000) The potential of anti-tick plants as components of integrated tick control strategy. Ann. N. Y. Acad. Sci. 916, 576582.CrossRefGoogle Scholar
Kaaya, G. P., Samish, M. and Itamar, G. (2000) Laboratory evaluation of pathogenicity of entomogenous nematodes to African tick species. Ann. NY Acad. Sci. 916, 303308.CrossRefGoogle ScholarPubMed
Kaaya, G. P. and Saxena, R. C. (1998) Evaluation of neem products for the control of the African ticks Rhipicephalus appendiculatus, Amblyomma variegatum and Boophilus decoloratus. ICIPE Annu. Sci. Rep. 1995–1997.Google Scholar
Kaaya, G. P. (1992) Non-chemical agents and factors capable of regulating tick populations in nature: A mini review, insect Sri. Applic. 13, 587594.Google Scholar
Kaaya, G.P. (1994) Achieving sustainable crop production in Africa: Roles of pesticides and biological control agents in integrated pest management. Insect Sci. Applic. 15, 223234.Google Scholar
Kaaya, G.P., Mwangi, E.N. and Malonza, M.M. (1995) Acaricidal activity of Margaritona discoidea plant extracts against the ticks Rhipicephalus appendiculatus and Amblyomma variegatum. Int. J. Acarol. 21, 123129.CrossRefGoogle Scholar
Kaaya, G.P., Mwangi, E.N. and Ouna, E. (1996) Prospects for biological control of livestock ticks, Rhipicephalus appendiculatus and Amblyomma variegatum with the entomogenous fungi, Beauveria bassiana and Metarhizium anisopliae. J. Invertebr. Pathol. 67, 1520.CrossRefGoogle ScholarPubMed
Kaaya, G.P. and Okech, M.A. (1990) Horizontal transmission of mycotic infection in adult tsetse, Glossina morsitans morsitans. Entomophaga 35, 4657.CrossRefGoogle Scholar
Kagaruki, L. (1997) Country Report, Tanzania, pp. 1011. In Proceedings of International Tick Modelling Workshop, 9–19 September 1997, ICIPE, Nairobi, Kenya. ICIPE Science Press, Nairobi, Kenya.Google Scholar
Kaya, H.K. (1985) Entomogenous nematodes for insect control in IPM systems, pp. 283302. In Biological Control in Agricultural IPM Systems (Edited by Hass, M.A. and Herzog, D.C.). Academic Press, New York.CrossRefGoogle Scholar
Kocan, K.M., Pidnerney, M.S., Claypool, P.L., Samish, M. and Glazer, I. (1998) Interaction of entomopathogenic nematodes (Steinernematidae) with selected species of ixodid ticks (Acarina: Ixodidae). J. Med. Entomol. 35, 514520.CrossRefGoogle ScholarPubMed
Maradufu, A. (1982) Furanosesquiterpenoids of Commiphora erythraea and C. myrrh. Phytochem. 21, 677680.CrossRefGoogle Scholar
Mather, T. N., Piesman, J. and Spielman, A. (1987) Absence of spirochaetes Borrelia burgdoferi and piroplasms Babesia microti in deer ticks Ixodes dammini parasitized by chalcid wasps Hunterellus hookeri. Med. Vet. Entomol. 1, 38.CrossRefGoogle Scholar
Mauleon, H., Barre, N. and Panova, S. (1993) Pathogenicity of 17 isolates of entomophatogous nematodes (Steinernematidae and Heterorhabditidae) for the ticks Amblyomma variegatum (Fabricius), Boophilus microplus (Canestrini) and Boophilus annulatus (Say). Exp. Appi. Acarol. 17, 831838.Google ScholarPubMed
Moreau, R.E. (1933) The food of the red-billed oxpecker, Buphagus erythrorynchus (Stanley). Bull. Entomol. Res. 24, 325335.CrossRefGoogle Scholar
Mwangi, E. N. and Kaaya, G. P. (1997) Prospects of using parasitoids (Insecta) for tick management in Africa. Int. J. Acarol. 23, 215219.CrossRefGoogle Scholar
Mwangi, E. N., Hassan, S. M., Kaaya, G. P. and Essuman, S. (1997) The impact of Ixodiphagus hookeri, a tick parasitoid on Amblyomma variegatum (Acari: Ixodidae) in a field trial in Kenya. Exp. Appi. Acarol. 21, 117126.CrossRefGoogle Scholar
Mwangi, E. N., Essuman, S., Kaaya, G. P., Nyandat, E., Munyinyi, D. and Kimondó, M. (1995) Repellence of the tick Rhipicephalus appendiculatus by the grass Melinis minutiflora. Trop. Anim. Hlth Prod. 27, 211216.CrossRefGoogle ScholarPubMed
Mwangi, E.N., Essuman, S., Kaaya, G.P., Nyandat, E., Munyinyi, D. and Kimondó, M. G. (1994a) Repellence of the tick Rhipicephalus appendiculatus by the grass Melinis minutiflora. Trop. Anim. Hlth Prod. 27, 211216.CrossRefGoogle Scholar
Mwangi, E. N., Kaaya, G.P. and Kimondó, M.G. (1994b) Infection of Amblyomma variegatum with a hymenopteran parasitoid in the laboratory and some aspects of its basic biology, J. Biol. Contr. 4/2, 101104.CrossRefGoogle Scholar
Mwangi, E.N., Dipeolu, O.O., Kaaya, G.P., Newson, R.M., and Hassan, S.M. (1991) Predators, parasitoids and pathogens of ticks. A review. Biocontr. Sci. Technol. 1, 147156.CrossRefGoogle Scholar
Mwangi, E.N., Newson, R. M. and Kaaya, G.P. (1993) A new hymenopteran species of parasitoid isolated from the Bont tick, Amblyomma variegatum. Discovery and Innovation 5, 331335.Google Scholar
Norval, R.A.I., Perry, B.D. and Young, A. S. (1992) The Epidemiology ofTheileriosis in Africa. Academic Press, London. 481 pp.Google Scholar
Norval, R.A.I., Tebele, N., Short, N.J. and Clatworthy, J.N. (1983) A laboratory study on the control of economically important tick species with legumes of the genus Stylosanthes. Zimbabwe Vet. J. 14, 2629.Google Scholar
Okello-Onen, J. and Nsumbuga-Mutaka, R. C. (1997) The status of ticks and tick-borne diseases in Uganda, pp. 89. In Proceedings of International Tick Modelling Workshop, 9–19 September 1997, ICIPE, Nairobi, Kenya. ICIPE Science Press, Nairobi, Kenya.Google Scholar
Pegram, R. G., Chizyuka, H. G. B., Mwase, E. T. and Zekle, Z. (1988) Production economics in worldwide animal commodities subject to disease transmission and infestation by acariñes: The economic impact of cattle tick control in Central Africa. Nat. Symp. Theileriosis, 17–19 October, Lusaka, Zambia.Google Scholar
Perry, B.D., Mukhebi, A. W., Norval, R. A. I and Barret, J. C. (1990) A preliminary assessment of current and alternative tick-borne disease control strategies in Zimbabwe. Report to the Director of Veterinary Services, Zimbabwe. 41 pp.Google Scholar
Poinar, G.O. Jr (1979) Nematodes for Biological Control of Insects. CRC Press, Boca Raton, Fla. 248 pp.Google Scholar
Rice, M. (1993) Development of neem research and industry in Australia. World neem conference (Bangalore, India), Souvenir, pp. 824.Google Scholar
Rutz, D.A. and Patterson, R.S. (1990) Biocontrol of Arthropods Affecting Livestock and Poidtry. Westview Press, Boulder, Co.316 pp.Google Scholar
Samish, M. (2000) Biocontrol of ticks. Ann. NY Acad. Sci. 916, 172178.CrossRefGoogle ScholarPubMed
Samish, M. and Glazer, I. (1991) Killing ticks with parasitic nematodes of insects, J. Invertebr. Pathol. 58, 281282.CrossRefGoogle ScholarPubMed
Samish, M. and Glazer, I. (1992) Infectivity of the entomopathogenic nematodes Steinernema earpocapsae and Heterorhabditidae bacteriophora to female ticks of Boophilus annulatus (Arachnida: Ixodidae). J. Med. Entomol. 29, 614618.CrossRefGoogle ScholarPubMed
Samish, M. and Rehacek, J. (1999) Pathogens and predators of ticks and their potential in biological control. Annu. Rev. Entomol. 44, 159182.CrossRefGoogle ScholarPubMed
Saxena, R. C. (1989) Insecticides from neem, pp. 110135. In Insecticides of Plant Origin (Edited by Amason, J. T., Philogene, B. J. R. and Morand, P.. ACS Symp. Series 387. American Chemical Society, Washington D.C.CrossRefGoogle Scholar
Schmutterer, H. (1990) Properties and potentials of natural pesticides from neem tree, Azadtrachta indica. Annu. Rev. Entomol. 35, 271297.CrossRefGoogle ScholarPubMed
Stutterheim, C.J. and Brooke, R.K. (1981) Past and present ecological distribution of the yellow-billed oxpecker in South Africa. South African J. Zool. 16, 4449.CrossRefGoogle Scholar
Stutterheim, I.M., Bezuidenhout, J.D. and Elliott, E.G.R. (1988) Comparative feeding behavior and food preferences of oxpeckers Buphagus erythrorynchus and B. africanus in captivity. Onderstepoort J. Vet. Res. 55, 173179.Google Scholar
Sutherst, R. W., Raymond, J. J. and Schnitzerling, H. J. (1982) Tropical legumes of the genus Stylosanthes immobilize and kill cattle ticks. Nature 295, 320321.CrossRefGoogle ScholarPubMed
Tatchell, R. J., Chimwani, D., Chirchir, J. J., Ongare, J. O., Mwangi, E., Rinkanya, F. and Whittington, D. (1986) A study of the justification for intensive tick control in Kenya rangelands. Vet. Record 119, 401403.CrossRefGoogle ScholarPubMed
Thomson, K. C., Rao, J. and Romero, T. (1978) Anti-tick grasses as the basis for developing practical tropical tick control packages. Trop. Anim. Hlth. Prod. 10, 179182.CrossRefGoogle Scholar
Van Someren, V.D. (1951) The red-billed oxpecker and its relation to stock in Kenya. East Afr. Agrie. J. 17, 111.Google Scholar
Wharton, R. H. and Roulston, W.J. (1970) Resistance of ticks to chemicals. Annu. Rev. Entomol. 15, 281–104.CrossRefGoogle ScholarPubMed
Wysoki, M. (1998) Problems and trends of agricultural entomology at the end of the 2nd millennium, pp. 89143. In Estratto da Boll. Del laboratorio di entomologia agraria-portici “Fillipo Silverstri”. Napoli, Italy. 54.Google Scholar
Zimmerman, R. H., Carris, C. I. and Beaver, J.S. (1984) Potential of Stylosanthes plants as a component in an integrated pest management approach to tick control. Prev. Vet. Med. 2, 579588.CrossRefGoogle Scholar