Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-01T02:11:56.415Z Has data issue: false hasContentIssue false

Nutritional preferences of Grammodes stolida (Fab), A defoliator of the forest tree, Lannea coromandelica (Houtt)

Published online by Cambridge University Press:  19 September 2011

K. P. Sanjayan
Affiliation:
G.S. Gill Research Institute, Guru Nanak College Madras-600 042, India
D. Suresh Chand
Affiliation:
G.S. Gill Research Institute, Guru Nanak College Madras-600 042, India
Get access

Abstract

In quantitative feeding experiments, larvae of Grammodes stolida (Fab) consumed significantly more of mature leaves than young and senescent leaves of Lannea coromandelica (Houtt). The maximum leaf consumption was by the third instar. The amount of food consumed by the penultimate and final instars comprised 72.6% of the total larval consumption. Food utilisation indices, namely approximate digestibility (AD), efficiency of conversion of ingested food (ECI), and efficiency of conversion of digested food (ECD) showed a significant decrease during the second larval stage. The bionomics of the moth were studied in relation to its survivability and reproductive potential on Lannea coromandelica which appears to be a potential host which the pest could colonise during periods of non-availability of other crop hosts.

Résumé

Dans des expériences quantitatives d'alimentation, des larves de Grammodes stolida (Fab) ont consommé significativement plus de feuilles mûres que de feuilles jeunes ou vieillissantes de Lannea coromandelica (Houtt). Le maximum de consommation folière était chez le troisième stade. La quantité de nourriture consommée par les stade pénultième et terminaux comprenait 72.6% de la consommation larvaire totale. Les indices d'utilisation de nourriture, à savoir la digestiblilité approximative (DA), l'efficience de conversion de la nourriture ingérée (ECI), efficience de conversion de la nourriture digérée (ECD) ont montré une diminution significative pendant le deuxième stade larvaire. La bionomie de la phalène a été étudiée en rapport avec sa survie et son potentiel de reproduction sur Lannea coromandelica qui semble être un hôte potentiel que le ravageur pourrait coloniser pendant les périodes d'indisponibilité d'autres plantes.

Type
Research Articles
Copyright
Copyright © ICIPE 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Applebaum, S. W. (1985) Biochemistry of digestion, pp. 279311. In Comprehensive Insect Physiology, Biochemistry and Pharmacology Vol. 4 (Edited by Kerkut, G. A. and Gilbert, L.I.). Pergamon Press, Oxford.Google Scholar
Bailey, C. G. (1976) A quantitative study of consumption and utilization of various diets in the bertha army worm, Mamestra configurata (Lepidoptera: Noctuidae). Canad. Ent. 108, 13191326.CrossRefGoogle Scholar
Brattsten, L. B. and Ahmad, S. (1986) Molecular Aspects of Insect-Plant Associations. Plenum Press, N. York and London. 346 pp.Google Scholar
Brewer, J. W., Capinera, L. L., Deshan, R. E. Jr and Walmsley, M. L. (1985) Influence of foliar nitrogen levels on survival, development and reproduction of western spruce budworm, Choristoneura occidentalis (Lepidoptera: Torticidae). Can. Ent. 117, 2332.CrossRefGoogle Scholar
Broadway, R. M. and Duffey, S. S. (1986) The effect of dietary protein on the growth and digestive physiology of larval Heliothis zea and Spodoptera exigua. J. Insect Physiol. 32, 673680.CrossRefGoogle Scholar
Cates, R. G., Redak, R. A. and Henderson, C. B. (1983) Natural products defensive chemicals of Douglas-fir, western spruce budworm success, and forest management practices. Z. Angew. Entomol. 96, 173182.CrossRefGoogle Scholar
Coley, P. D. (1980) Effects of leaf age and plant life history patterns on herbivory. Nature 284, 545546.CrossRefGoogle Scholar
Crawley, M. J. (1983) Herbivory: The Dynamics of Animal-Plant Interactions. University of California Press, Berkeley and Los Angeles. 437 pp.Google Scholar
Feeny, P. D. (1970) Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51, 565581.CrossRefGoogle Scholar
Finch, S. (1980) Chemical attraction of plant-feeding insects to plants. Appl. Biol. 5, 67143.Google Scholar
Hill, D. S. (1987) Agricultural Insect Pests of the Tropics and their Control. Cambridge Univ. Press. 740 pp.Google Scholar
Humphries, E. C. (1956) Mineral Compounds and Ash Analysis in Modern Methods of Plant Analysis, pp. 237248 (Edited by Peach, K. and Tracey, M. V.). Springer Verlag, Berlin.Google Scholar
Lance, D. R. (1983) Host-seeking behaviour of gypsy moth: The influence of polyphagy and highly apparent host plants, pp. 201224. In Herbivorous Insects: Host Seeking Behaviour and Mechanisms (Edited by Ahmad, S.). Academic Press, New York.CrossRefGoogle Scholar
Mattson, W. J. Jr, (1980) Herbivory in relation to nitrogen content. Annu. Rev. Ecol. Syst. 11, 119162.CrossRefGoogle Scholar
McNeill, S. and Southwood, T. R. E. (1978) The role of nitrogen in the development of insect plant relationships, pp. 7798. In Biochemical Aspects of Plants and Animal Co-evolution (Edited by Harbone, J. B.). Academic Press, London.Google Scholar
Miller, J. R. and Strickler, K. L. (1984) Finding and accepting host plants, pp. 127157. In Chemical Ecology of Insects (Edited by Bell, W. J. and Carde, R. T.). Chapman and Hall, London and New York.CrossRefGoogle Scholar
Niemela, P., Tuomi, J. and Haukioja, E. (1980) Age specific resistance in trees: Defoliation of Tamaracks (Larix laricina) by larch bud moth (Zeiraphera improbana) (Lepidoptera: Tortricidae). Rep. Kevo. Subarct. Res. Stn. 16, 4957.Google Scholar
Patho, P. D., Sanjayan, K. P. and Muralirangan, M. C. (1993) Influence of host nitrogen on the reproductive biology of Oxya fuscovittata (Orthoptera: Acrididae). Proc. Indian Natn. Sci. Acad. 59, 483–187.Google Scholar
Premkumar, M., Dale, D. and Nair, M. R. G. K. (1977) Consumption, digestion and utilization of food by larvae of Spodoptera litura F. (Lepidoptera: Noctuidae). Entomon 2, 710.Google Scholar
Prokopy, R. J., Collier, R. H. and Finch, S. (1983) Leaf color: A character used by cabbage root flies to distinguish among host plants. Science 221, 190191.CrossRefGoogle ScholarPubMed
Rana, B., Prasad, B. and Nigam, M. P. (1987) Consumption and utilization of food by oak-tasar silkworm Antheraea proylei Jally (Lep.: Satur.). Sericologia 27, 1119.Google Scholar
Rosenthal, G. A. and Janzen, D. H. (1979) Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, N. York. 718 pp.Google Scholar
Sanjayan, K. P., Muralirangam, M. C., Suresh, P., Suresh Chand, D. and Albert, S. (1995) The plant community structure of the Nanmangalam Reserve Forest, Tamil Nadu: A paradigm of the spatial distribution pattern in a natural scrub-jungle ecosystem. Int. J. Eco. Environ. Sci. 21, 297307.Google Scholar
Schowalter, T. D., Hargrone, W. W. and Crossley, D. A., Jr. (1986) Herbivory in forested ecosystem. Annu. Rev. Entomol. 31, 177196.CrossRefGoogle Scholar
Schroeder, L. A. (1986) Protein limitations of a tree feeding lepidopteran. Entomol. Exp. Appl. 41, 115120.CrossRefGoogle Scholar
Schultz, J. C. (1983) Habitat selection and foraging tactics of caterpillars in heterogenous trees, pp. 6191. In Variable Plants and Herbivores in Natural and Managed Systems (Edited by Denno, R. F. and McClure, M. S.). Academic Press, New York.CrossRefGoogle Scholar
Scriber, J. M. (1977) Limiting effects of low leaf-water content on the nitrogen utilization energy budget and larval growth of Hyalophora cecropia. Oecologia 28, 269287.CrossRefGoogle Scholar
Slansky, F. Jr and Feeny, P. (1977) Stabilization of the rate of nitrogen accumulation by larvae of the cabbage butterfly on wild and cultivated food plants. Ecol. Monogr. 47, 209228.CrossRefGoogle Scholar
Slansky, F. Jr and Scriber, J. M. (1985) Food consumption and utilization, pp. 87164. In Comprehensive Insect Physiology, Biochemistry and Pharmacology Vol. 4 (Edited by Kerkut, G. A. and Gilbert, L. I.). Pergamon Press, Oxford.Google Scholar
Waldbauer, G. P. (1968) The consumption and utilization of food by insects. Adv. Insect Physiol. 5, 229288.CrossRefGoogle Scholar
Whitham, T. G. (1981) Individual trees as heterogenous environments: Adaptation to herbivory or epigenetic noise?, pp. 927. In Insect Life His tory Patterns: Habitat and Geographic Variations (Edited by Denno, R. F. and Dingle, H.). Springer-Verlag, Berlin and NY.CrossRefGoogle Scholar
Wightman, J. A. (1978) The ecology of Callosobruchus analis (Coleoptera: Bruchidae): Morphometrics and energetics of the immature stages. J. Anim. Ecol. 47, 117129.CrossRefGoogle Scholar
Yadava, P. S., Vats, L. K. and Kaushal, B. R. (1979) Food consumption, assimilation and growth in the larvae of Pienis brassicae Linn. J. Anim. Physiol. 26, 257264.Google Scholar