Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T21:15:58.333Z Has data issue: false hasContentIssue false

Insect antifertility and antifeedant allelochemics in Adhatoda vasica

Published online by Cambridge University Press:  19 September 2011

B. P. Saxena
Affiliation:
Regional Research Laboratory, Jammu Tawi 180001, Baroda, India
K. Tikku
Affiliation:
Regional Research Laboratory, Jammu Tawi 180001, Baroda, India
C. K. Atal
Affiliation:
Regional Research Laboratory, Jammu Tawi 180001, Baroda, India
Opender Koul*
Affiliation:
Malti-Chem Research Centre, Nandesari 391340, Baroda, India
*
* To whom all correspondence should be addressed.
Get access

Abstract

Various alkaloids from Adhatoda vasica (Acanthaceae) were found to be responsible for the antifertility and antifeedant activity of the extracts of the plant against insects. Among the major alkaloids vasicine, vasicinol and vasicinone severe antifertility effects were exhibited by vasicinol against Dysdercus skoenigii and Tribolium castaneum due to blocking of oocytes in the oviduct. Feeding deterrence was observed against Aulacophora foveicollis and Epilachna vijintioctopunctata at 0.05 and 0.1% levels of these compounds. These allelochemics appear to show a dual activity vis-à-vis a species specificity.

Résumé

Nous avons établi qu'un certain nombre d'alcaloides extraits de l'Adhatoda vasica étaient à l'origine des réactions stérilisante et anti-appetent de la plante à l'égard des insectes. Parmi les trois alcaloides principaux: vasicine, vasicinone et vasicinol, ce dernier presente de puissants effets stérilisants contre le Dysdercus koenigii et le Tribolium castaneum, par arrêt des oocytes sur le chemin de l'oviducte. La fonction d'anti-appetent de ces composes à des taux compris entre 0.05 et 0.1% a pu etre observée contre l'Aulacophora foveicollis et l'Epilachna vijintioctopunctata.

L'apparait donc que ces matières chemiques allelomorphes presentent deux fonctions qui s'exercent sur la spécificité des especes.

Type
Research Articles
Copyright
Copyright © ICIPE 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bhalla, H. L., D'Cruz, J. L. and Kokate, C. K. (1982) Improved method of extraction and analysis of vasicine and vasicinone, the alkaloids of Adhtoda vasica Nees. Indian Drugs 20, 1618.Google Scholar
Bowers, W. S., Ohta, T., Cleere, J. S. and Marsella, P. A. (1976) Discovery of insect anti-juvenile hormones in plants. Science 193, 542547.CrossRefGoogle ScholarPubMed
Casida, J. E. (1976) Prospectus for new types of insecticides. In The Future for Insecticides (Edited by Metcalf, R. L. and Mckelvey, J. J. Jr), pp. 349366. Wiley, New York.Google Scholar
Chopra, R. N., Nayar, S. L. and Chopra, I. C. (1956) Glossary of Indian Medicinal Plants. CSIR publication p. 7.Google Scholar
Dahlman, D. L. (1977) Effects of L-canavanine on the consumption and utilization of artificial diet by the tobacco hornworm Manduca sexta. Entomologia exp. appl. 24, 310316.Google Scholar
Gupta, R. K. and Jain, M. P. (1979) A note on total estimation of total alkaloids of Adhatoda vasica Nees. Indian Drugs 16, 160161.Google Scholar
Jain, M. P., Koul, S. K., Dhar, K. L. and Atal, C. K. (1980) Novel Norharmal alkaloids of Adhatoda vasica Nees. Phytochemistry 19, 18801882.CrossRefGoogle Scholar
Koul, O. (1982) Insect feeding deterrents in plants. Ind. Rev. Life Sci. 2, 97125.Google Scholar
Koul, O. (1983a) L-Canavanine an antigonadal substance for Dysdercus koenigii. Entomologia exp. appl. 34, 297300.CrossRefGoogle Scholar
Koul, O. (1983b) Feeding deterrence induced by plant limonoids in the larvae of Spodoptera litura F. Z. angew. Ent. 95, 166171.CrossRefGoogle Scholar
Koul, O., Tikku, K. and Saxena, B. P. (1977) Mode of action of Acorus calamus L oil vapours on male adult sterility in red cotton bugs. Experientia 33, 2931.CrossRefGoogle Scholar
Metwally, M. M. (1972) Effect of metepa and hempa on the ovarian development of the Khapra beetle Trogoderma granarium. Acta ent. Bohem. 69, 229242.Google Scholar
Miller, P. L. (1974) Respiration—aerial gas transport. In The Physiology of Insecta (Edited by Rockestein, M.), pp. 345367. Academic Press, New York.CrossRefGoogle Scholar
Openshaw, H. T. (1953) The quinazoline alkaloids. In The Alkaloids (Edited by Manske, R. H. F. and Homes, H. L.), Vol. III, pp. 101118. Academic Press, New York.Google Scholar
Rai, K. S. (1964) Cytogenetic effects of chemosterilants in mosquitoes II. Mechanism of apholate induced changes in fecundity and fertility of Aedes aegypti. Biol. Bull. 124, 119137.CrossRefGoogle Scholar
Saxena, B. P., Koul, O., Tikku, K., Atal, C. K., Suri, O. P., and Suri, K. A. (1979) Aristolochic acid—I, an insect chemosterilant from Aristolochia bractaeta Retz. Ind. J. exp. Biol. 17, 354360.Google Scholar
Schoonhoven, L. M. (1981) Chemical mediators between plants and phytophagous insects. In Semiochemicals, Their Role in Pest Control (Edited by Nordlund, D. A., Jones, K. L. and Lewis, W. J.), pp. 3150. Wiley, New York.Google Scholar
Shrivastava, A. S., Saxena, H. P. and Singh, D. R. (1965) Adhatoda vasica a promising insecticide against pests of storage. Lab. Devi. 3, 138139.Google Scholar
Spath, E. and Kosztler, F. (1960) Secondary alkaloids from Adhatoda vasica. Montash. Chem. 91, 11501151.Google Scholar
Taniguchi, M., Yamaguchi, M., Kubo, I. and Kubota, T. (1979) Inhibitory effects of Isodon diterpenoids on growth and mitochondrial oxidative phosphorylation in lepidopterous insects. Agric, biol. Chem. 43, 7174.Google Scholar
Waiss, A. C. Jr, Chan, B. G., Elliger, A. C., Wiseman, B. R., McMillan, W. W., Widstran, W. W., Zuber, M. S. and Keaster, A. J. (1979) Maysin a flavone glycoside from corn silk with antibiotic activity towards corn earworms. J. econ. Ent. 72, 256258.CrossRefGoogle Scholar