Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T17:33:19.983Z Has data issue: false hasContentIssue false

Influence of Temperature on Knock-down and Mortality to Fenitrothion in the Three Lepidopteran Species of Insects

Published online by Cambridge University Press:  19 September 2011

V. B. Yadwad
Affiliation:
Department of Studies in Zoology, Karnatak University, Dharwad-580003, India
V. L. Kallapur
Affiliation:
Department of Studies in Zoology, Karnatak University, Dharwad-580003, India
Get access

Abstract

Both sublethal and lethal doses of fenitrothion treatment caused positive temperature toxicity relationship in three lepidopteran fifth instar larvae, Achaea Janata, Mythimna separata and Bombyx mori.

The LD50 value was very low at 30°C compared to 28 and 18°C. In all the three species, the insecticide caused greater rate of regurgitation of body fluid at higher temperature. It is believed that the loss of body fluid causes desiccation and enhances the poisoning effects of fenitrothion.

Résumé

Le traitement du cinquième étape du 5th instar larvae, Achaea lanata, Mythimna separata et Bombyx mori par les doses létales et sous létales du fénitrothion a démontré un resultat positif d'un rapport temperature-toxicité.

La valeur LD50 était plus basse à 38°C que celles à 28 et à 18°C. Dans toutes trois spécies l'insecticide a provoqué un taux elevé de régurgitation du fluid corporel aux temperatures élevés. A partir de cette observation, nous pouvous constater que la perte du fluid corporel pourrait être la cause de la desiccation et elle accroit les effects d'empoissonnement de fénitrothion.

Type
Research Article
Copyright
Copyright © ICIPE 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blum, M. S. and Kearns, C. W. (1956) Temperature and the action of pyrethrum in the American cockroach. J. Econ. Ent. 49, 862863.CrossRefGoogle Scholar
Brown, A. W. A. and Pal, R. (1971) Insecticide Resistance in Arthropods. WHO, Geneva.Google ScholarPubMed
Busvine, J. R. (1971) A critical Review of the Technique for Testing Insecticides. Commonwealth Agricultural Bureau, London.Google Scholar
Champ, B. R. and Dyte, C. E. (1977) FAO global survey of pesticide susceptibility of stored grain pests. FAO Plant Prot. Bull. 25, 4967.Google Scholar
De Vries, D. H. and Georghiou, G. P. (1979) Influence of temperature on the toxicity of insecticides to susceptible and resistant house flies. J. Econ. Ent. 72, 4852.CrossRefGoogle Scholar
Finney, D. J. (1964) Statistical Methods in Biological Assay Charles Griffin and Co. Ltd., London.Google Scholar
Fullbrook, S. L. and Holden, J. S. (1980) Possible mechanism of resistance to permethrin in cotton pest. In Insect Neurobiology and Pesticide Action (Neurotox, 79), pp. 281287. Society of Chemical Industries, London.Google Scholar
Gammon, D. W. (1978) Neural effects of allethrin on the free walking cockroach, Periplaneta americana: An investigation using defined doses at 15 and 32°C. Pestic. Sci. 9, 79.CrossRefGoogle Scholar
Gammon, D. W. and Holden, J. S. (1980) A neural basis for pyrethroid resistance in larvae of Spodoptera litloralis. Insect Neurobiology and Pesticide Action (Neurotox, 79), pp. 516522. Society of Chemical Industries, London.Google Scholar
Gammon, D. W., Brown, M. A. and Casida, J. E. (1981) Two classes of pyrethroid action in the cockroach. Pestic. Biochem. Physiol. 15, 181186.CrossRefGoogle Scholar
Hadaway, A. B. (1978) Post-treatment temperature and the toxicity of some insecticides to tsetse flies. WHO/VBC, 78, 693.Google Scholar
Harris, C. R. and Kinoshita, G. B. (1977) Influence of post-treatment temperature on the toxicity of pyrethroid insecticides. J. Econ. Ent. 70, 215220.CrossRefGoogle Scholar
Harris, C. R., Svee, J. H. J. and Chapman, R. A. (1978) Laboratory and field studies on the effectiveness and persistence of pyrethroid insecticides used for cabbage looper control. J. Econ. Ent. 71, 642644.CrossRefGoogle Scholar
Hirano, M. (1979) Influence of post-treatment temperature on the toxicity of fenvalerate. Appl. Ent. Zool. 14, 404409.CrossRefGoogle Scholar
Maddrell, S. H. P. and Casida, J. E. (1971) Mechanism of insecticide induced diuresis in Rhodnius. Nature. 231, 551.CrossRefGoogle ScholarPubMed
Mclntosh, A. H. (1957) Temperature and toxicity of insecticides. Chem. Ind. 2.Google Scholar
Anonymous (1975) Fenitrothion: The effect of its use on environmental quality and its chemistry, pp. 1162, NRC bulletin, NRC Associate Committee on Scientific Criteria for Environmental Quality, Canada.Google Scholar
Orchard, I. (1980) Electrical activity of neurosecretory cells and its modulation by insecticides. In Insect Neurobiology and Pesticide Action (Neurotox, 79) pp. 321328. Society of Chemical Industries, London.Google Scholar
Osborne, M. P. (1980) The insect synapse. Structural, functional aspects in relation-to insecticidal action. In Insect Neurobiology and Pesticide Action (Neurotox, 79), pp. 2940. Society of Chemical Industries, London.Google Scholar
Richards, A. G. (1963) The effect of temperature on the rate of oxygen consumption and on an oxidative enzyme in the cockroach Periplaneta americana. Ann. Ent. Soc. Am. 56, 355357.CrossRefGoogle Scholar
Scott, J. G. and Georghiou, G. P. (1984) Influence of temperature on the knock-down, toxicity and resistance to pyrethroids in the housefly, Musca domestica. Pestic. Biochem. Physiol. 21, 5362.CrossRefGoogle Scholar
Scott, J. G. and Matsumura, F. (1983) Evidence for two types of toxic actions of pyrethroids on the susceptible and resistant German cockroaches. Pestic. Biochem. Physiol. 19, 141145.CrossRefGoogle Scholar
Sparks, T. C., Shour, M. H. and Yer, E. G. W. (1982) Temperature toxicity relationships of pyrethroids on three lepidopterans. J. Econ. Ent. 75, 643646.CrossRefGoogle Scholar
Sun, Y. P. (1960) Pre-test conditions which affect insect reaction on the toxicity of five insecticides against five species of stored product insects. J. Econ. Ent. 62, 130135.Google Scholar
Hao, Ying Song (1986) Temperature toxicity relationship of seven pyrethroids on the five insect species. Acta. Ent. Sin. 29, 2934.Google Scholar