Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T23:12:10.106Z Has data issue: false hasContentIssue false

The impact of oviposition-site deprivation in gravid females of Anopheles gambiae (Diptera: Culicidae) on fecundity, trophic behaviour and life expectancy

Published online by Cambridge University Press:  10 October 2013

Renaud Govoetchan*
Affiliation:
Centre de Recherche Entomologique de Cotonou, 06 BP 2604, Cotonou, Bénin
Arthur Sovi
Affiliation:
Centre de Recherche Entomologique de Cotonou, 06 BP 2604, Cotonou, Bénin
Rock Aïkpon
Affiliation:
Centre de Recherche Entomologique de Cotonou, 06 BP 2604, Cotonou, Bénin
Albert Salako
Affiliation:
Centre de Recherche Entomologique de Cotonou, 06 BP 2604, Cotonou, Bénin
Frédéric Oké Agbo
Affiliation:
Centre de Recherche Entomologique de Cotonou, 06 BP 2604, Cotonou, Bénin
Alex Asidi
Affiliation:
London School of Hygiene and Tropical Medicine, Keppel Street, LondonWC1E 7HT, UK
Martin Akogbéto
Affiliation:
Centre de Recherche Entomologique de Cotonou, 06 BP 2604, Cotonou, Bénin
*
Get access

Abstract

Short and long dry spells occur throughout the year and limit the access of gravid mosquitoes to oviposition sites. Using simulations in laboratory conditions, we explored the possible consequences of a long duration of egg retention on reproductive capacity, trophic behaviour, life expectancy and gonotrophic cycle in a context of breeding-site absence. KISUMU and wild gravid females of Anopheles gambiae were subjected to a delay in egg-laying following the preset modalities as immediate egg-laying versus retention for 5, 10 and 15 days. The egg batch size and the hatching rate were measured. In addition, blood-feeding patterns and life expectancy were investigated. Our study showed that oviposition occurs much faster in the standard susceptible laboratory strain An. gambiae KISUMU with a lapse of 2.2 days than in the wild females of An. gambiae with an average of 5 days between the second blood meal and egg-laying. In this experiment, the egg-retention time did not significantly affect the number of eggs laid. In the absence of breeding sites, the rate of egg-hatching decreased in proportion as the retention time became longer. The study also showed that gravid females deprived of oviposition sites continue to take blood meals. The average longevity of non-gravid females was estimated to be lower than that of gravid females. The oviposition-site deprivation has no impact on female fecundity and blood feeding, but influences egg-hatching.

Type
Research Papers
Copyright
Copyright © icipe 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akogbéto, M. and Yakoubou, S. (1999) Resistance of malaria vectors to pyrethrins used for impregnating mosquito nets in Benin, West Africa. Bullétin de la Société de Pathologie Exotique 92, 123130.Google Scholar
Alto, B. W. and Juliano, S. A. (2001) Temperature effects on the dynamics of Aedes albopictus (Diptera: Culicidae) populations in the laboratory. Journal of Medical Entomology 38, 548556.Google Scholar
Amalraj, D. D., Sivagnaname, N. and Das, P. K. (2005) Effect of food on immature development, consumption rate, and relative growth rate of Toxorhynchites splendens (Diptera: Culicidae), a predator of container breeding mosquitoes. Memorias do Instituto Oswaldo Cruz 100, 893902.Google Scholar
Araújo, M. S. (2002) Larval food quantity affects development time, survival and adult biological traits that influence the vectorial capacity of Anopheles darlingi under laboratory conditions. Malaria Journal 11, 261.Google Scholar
Armstrong, J. and Bransbay-William, W.R. (1961) The maintenance of a colony of Anopheles gambiae, with observations on the effects of changes in temperature. Bull OMS 24, 427435.Google Scholar
Asidi, A., N'Guessan, R., Akogbeto, M., Curtis, C. and Rowland, M. (2012) Loss of household protection from use of insecticide-treated nets against pyrethroid-resistant mosquitoes, Benin. Emerging Infectious Diseases 18, 11011106.CrossRefGoogle ScholarPubMed
Carnevale, P., Bosseno, M. F., Molinier, M., Lancien, J., Le Pont, F. and Zoulini, A. (1979) Etude du cycle gonotrophique d'Anopheles gambiae (Diptera, Culicidae) (Giles, 1902) en zone de forêt dégradée d'Afrique Centrale. Cahiers ORSTOM, série Entomologie Médicale et Parasitologie XVII, 5575.Google Scholar
Charlwood, J. D., Vij, R. and Billingsley, P. F. (2000) Dry season refugia of malaria-transmitting mosquitoes in a dry savannah zone of East Africa. American Journal of Tropical Medicine and Hygiene 62, 726732.CrossRefGoogle Scholar
de Carvalho, S. C., Martins Junior Ade, J., Lima, J. B. and Valle, D. (2002) Temperature influence on embryonic development of Anopheles albitarsis and Anopheles aquasalis. Memorias do Instituto Oswaldo Cruz 97, 11171120.Google Scholar
Dieter, L., Huestis, L. and Lehmann, T. (2012) The effects of oviposition-site deprivation on Anopheles gambiae reproduction. Parasites & Vectors 5, 235.Google Scholar
Foster, W. A. (2001) Mosquito sugar feeding and reproductive energetics. Annual Review of Entomology 40, 443474.CrossRefGoogle Scholar
Gary, R. E. and Foster, W. A. (2001) Effects of available sugar on the reproductive fitness and vectorial capacity of the malaria vector Anopheles gambiae (Diptera: Culicidae). Journal of Medical Entomology 38, 2228.CrossRefGoogle ScholarPubMed
Gillies, M. T. (1953) The duration of the gonotrophic cycle in Anopheles gambiae and Anopheles funestus, with a note on the efficiency of hand catching. East African Medical Journal 30, 129135.Google Scholar
Hamon, J. (1963) Etude de l'âge physiologique des femelles d'anophèles dans les zones traitées au DDT, et non-traitées, de la région de Bobo-Dioulasso, Haute Volta. Bulletin of the World Health Organization 28, 83109.Google Scholar
Holstein, M. H. (1954) Biology of Anopheles gambiae. Research in French West Africa. Monograph Series No. 9, World Health Organization, Geneva. 172 pp.Google Scholar
Klowden, M. J., Blackmer, J. L. and Chambers, G. M. (1988) Effects of larval nutrition on the host-seeking behavior of adult Aedes aegypti mosquitoes. Journal of the American Mosquito Control Association 4, 7375.Google Scholar
Koenraadt, C. J., Paaijmans, K. P., Githeko, A. K., Knols, B. G. and Takken, W. (2003) Egg hatching, larval movement and larval survival of the malaria vector Anopheles gambiae in desiccating habitats. Malaria Journal 2, 2026.Google Scholar
Lehmann, T., Dao, A., Yaro, A. S., Adamou, A., Kassogue, Y., Diallo, M., Sekou, T. and Coscaron-Arias, C. (2010) Aestivation of the African malaria mosquito, Anopheles gambiae, in the Sahel. American Journal of Tropical Medicine and Hygiene 83, 601606.Google Scholar
Martens, P., Kovats, R., Nijhof, S., de Vries, P., Livermore, M., Bradley, D., Cox, J. and McMichael, A. (1999) Climate change and future populations at risk of malaria. Global Environmental Change 9, 89107.Google Scholar
McMichael, A. J., Ando, M. and Carcavallo, R. (1996) Human population health, pp. 561584. In Climate Change 1995. Impacts, Adaptations, and Mitigation of Climate Change: Scientific–Technical Analyses. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change (edited by McCarthy, J., Canziani, O., Leary, N., Dokken, D. and White, K.). Cambridge University Press, New York.Google Scholar
McMichael, A., Githeko, A., Akhtar, R., Carcavallo, R., Gubler, D. J., Haines, A., Kovats, R. S., Martens, P., Patz, J., Sasaki, A., Ebi, K., Focks, D., Kalkstein, L. S., Lindgren, E., Lindsay, L. R. and Sturrock, R. (2001) Human population health, pp. 453485. In Climate Change 2001: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change (edited by McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J. and White, K. S.). Cambridge University Press, Cambridge.Google Scholar
N'Guessan, R., Corbel, V., Akogbéto, M. and Rowland, M. (2007) Reduced efficacy of insecticide treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Bénin. Emerging Infectious Diseases 13, 199206.Google Scholar
Omer, S. M. and Cloudsley-Thompson, J. L. (1970) Survival of female Anopheles gambiae Giles through a 9-month dry season in Sudan. Bulletin of the World Health Organization 42, 319330.Google Scholar
Warburg, A. and Toure, Y. T. (2010) Aestivation of Anopheles gambiae: potential habitats and physiology. American Journal of Tropical Medicine and Hygiene 3, 601606.Google Scholar
Yadouléton, A., Padonou, G., Asidi, A., Moiroux, N., Banganna, S., Corbel, V., N'guessan, R., Gbenou, D., Yacoubou, I., Gazard Kinde, D. and Akogbeto, C. M. (2010) Insecticide resistance status in Anopheles gambiae in southern Bénin. Malaria Journal 9, 83.Google Scholar
Yaro, A., Traoré, A., Huestis, D., Adamou, A., Timbiné, S., Kassogué, Y., Diallo, M., Dao, A., Traoré, S. and Lehmann, T. (2012) Dry season reproductive depression of Anopheles gambiae in the Sahel. Journal of Insect Physiology 58, 10501059.Google Scholar