Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T05:02:13.489Z Has data issue: false hasContentIssue false

A general model for tsetse populations

Published online by Cambridge University Press:  19 September 2011

David J. Rogers
Affiliation:
Department of Zoology, University of Oxford, South Parks Rd., Oxford OX1 3PS, England
Get access

Abstract

The development of simple models for describing the population dynamics of species with overlapping generations is briefly described. The paper then presents a minimally complex simulation model for tsetse populations in which seasonally varying density-independent mortality, generally applied only to the adult stage, is combined with density dependence acting on both puparia and adults. Density dependence regulates population size within limits determined by an interaction between the strength of the density-dependent relationships and the variability of the seasonal density independence. Population data sets for Glossina palpalis and G. morsitans in Nigeria, and G. pallidipes in Kenya are adequately described by the model. Relationships discovered between the density-independent mortality and climatic variables for the Lambwe Valley data set allow predictions of population changes in other sites on the basis of their climatic conditions. Attempts to predict changes in the population of G.pallidipes in Somalia highlight the difficulties of this exercise. A tsetse's demographic response to climate may vary from region to region, making extensive predictions from local data sets difficult. There seems, however, no need to make more complex models to describe observed changes in tsetse populations.

Résumé

On a brieèvement élaboré des modèles simples permettant de décrire la dynamique de la population des espèces avec des générations débordantes. Ensuite le mémoire présente un modèle complexe de simulation pour les populations de tsé-tsé dans lequel la mortalité independante de la densité saisonnière variable, généralement appliquée au stade adulte, est combiné avec la dépendance de densité agissant en même temps sur les larves et sur les adultes. La dépendance de densité règie le volume de la population au sein des limites déterminées parune interaction entre la force des relations de la densité dépendante et la variabilité del'indépendance de la densité saisonnière. Les séries des donnés sur la population de Glossina palpalis et de G. morsitans au Nigéria et celles de G. pallidipes au Kenya sont décrites de façqon adéquate par le modèle. Les relations découvertes entre la mortalité indépendante de la densité et des variables climatiques pour la série des données de la Vallée de Lambwe, permet la suputation sur les changements dans d'autres sites sur base de leurs conditions climatiques. Les essais tendant aè prédire les changements aus sein de la population de G. pallidipes en Somalie, révèlent les difficultés auxquelle se heurte cet exercise. La réaction demographique des tsé-tsé au climat peut varier d'une region a'autre, rendant ainsi 1'élaboration des prévisions aè partir des données locales difficile. II semble, cependant, qu'il n'y a pas besoin d'élaborer des modèles plus complexes pour décrire les changements observés dans les populations des mouches tsé-tsé.

Type
Research Article
Copyright
Copyright © ICIPE 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allsopp, R. (1985) Variation in the rates of increase of Glossina morsitans centralis and their relevance to control. J. Appl. Ecol. 22, 91104.CrossRefGoogle Scholar
Anderson, R. M. (1982) Population Dynamics of Infectious Diseases. Chapman and Hall, London.Google Scholar
Anderson, R. M. and May, R. M. (1983) Vaccination against rubella and measles: quantitative investigations of different policies. J. Hyg., Cambridge 90, 259325.CrossRefGoogle ScholarPubMed
Anderson, R. M. and May, R. M. (1985) Herd immunity to helminth infection and implications for parasite control. Nature 315, 493496.CrossRefGoogle ScholarPubMed
Andrewartha, H. G. and Birch, L. C. (1956) The Distribution and Abundance of Animals. University of Chicago Press, Chicago.Google Scholar
Birley, M. H. (1984) Estimation, tactics and disease transmission. In Pest and Pathogen Control: Strategic, Tactical and Policy Models (Edited by Conway, G. R.), pp. 272289. International Series on Applied Systems Analysis 13, Wiley, Chichester.Google Scholar
Bourn, D. (1983) Tsetse control, agricultural expansion and environmental change in Nigeria. D.Phil. Thesis, Oxford University, U.K.Google Scholar
Buxton, P. A. (1955) The Natural History of Tsetse Flies. Mem. 10, London School of Hygiene and Tropical Medicine. H. K. Lewis, London.Google Scholar
Caughley, G. (1977) Analysis of Vertebrate Populations. Wiley, New York.Google Scholar
De Muynck, A., and Rogers, D. J. (1989) Workshop on Modelling Sleeping Sickness Epidemiology and Control. Ann. Soc. Beige Med. Trop. 69, Supplement 1, 1256.Google Scholar
Dransfield, R. D., Brightwell, R., Kiilu, J., Chaudhury, M. F. and Adabie, D. A. (1989) Size and mortality rates of Glossina pallidipes in the semi-arid zone of southwestern Kenya. Med. Vet. Entomol. 3, 8395.CrossRefGoogle ScholarPubMed
EATRO (1959) Annu. Rep. 1958. East African Trypanosomiasis Research Organization. EA High Commission, Nairobi 1959.Google Scholar
Hargrove, J. W. (1988) Tsetse: The limits to population growth. Med. Vet. Entomol. 2, 203217.CrossRefGoogle ScholarPubMed
Hassell, M. P. (1978) The Dynamics of Arthropod Predator-Prey Systems. Princeton University Press, Princeton.Google ScholarPubMed
Hassell, M. P. (1987) Detecting regulation in patchily distributed animal populations. J. Anim.Ecol. 56, 705713.CrossRefGoogle Scholar
Hassell, M. P., Latto, J. and May, R. M. (1989) Seeing the wood for the trees: Detecting density dependence from existing life-table studies. J. Anim. Ecol. 58, 883892.CrossRefGoogle Scholar
Hassell, M. P., Southwood, T. R. E. and Reader, P. (1987) The dynamics of the viburnum whitefly (Aleurotrachelus jelinekii): A case study of population regulation. J. Anim. Ecol. 56, 283300.CrossRefGoogle Scholar
HMSO (1958) Tables of Temperature, Relative Humidity and Precipitation for the World. Part IV. Africa, the Atlantic Ocean South of 35° North and Indian Ocean. HMSO, London.Google Scholar
Isherwood, F. and Duffy, B. J. (1959) The relation between nutritional status and apparent density of G. pallidipes. In EATRO 1959, pp. 5859.Google Scholar
Jackson, C. H. N. (1944) The analysis of a tsetse fly population II. Ann. Eugenics, Cambridge 12, 176205.CrossRefGoogle Scholar
Leslie, P. H. (1959) The properties of a certain lag type of population growth and the influence of an external random factor on a number of such populations. Physiol. Zool. 32, 151159.CrossRefGoogle Scholar
May, R. M. (1974) Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton.Google Scholar
May, R. M. (1984) Theoretical Ecology, 2nd edition. Blackwells, Oxford.Google Scholar
Maynard-Smith, J. (1968) Mathematical Ideas in Biology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Onyiah, J. (1978) Fluctuations in numbers and eventual collapse of a Glossina palpalis (R.-D.) population in Anara Forest Reserve of Nigeria. Acta Trop. 35, 253261.Google ScholarPubMed
Pennycuick, L. (1969) A computer model of the Oxford great tit population. J. Theor. Biol. 22, 381400.CrossRefGoogle ScholarPubMed
Phelps, R. J. and Clarke, G. P. Y. (1974) Seasonal elimination of some size classes in males of Glossina morsitans morsitans Westw. (Diptera, Glossinidae). Bull, entomol. Res. 64, 313324.Google Scholar
Randolph, S. E. and Rogers, D. J. (1986) The use of discriminant analysis for the estimation of sampling biases for female tsetse. sEcol. Entomol. 11, 205220.Google Scholar
Randolph, S. E., Rogers, D. J. and Kuzoe, F. A. S. (1984) Local variation in the population dynamics of Glossina palpalis palpalis (Robineau-Desvoidy) (Diptera: Glossinidae). II. The effect of insecticidal spray programmes. Bull, entomol. Res. 74, 425438.CrossRefGoogle Scholar
Rogers, D. J. (1974) Natural regulation and movement of tsetse fly populations. In Les Moyens de Lutte Contre les Trypanosomes et Leur Vecteurs, pp. 3538. IEMVT, Paris.Google Scholar
Rogers, D. J. (1979) Tsetse population dynamics and distribution: a new analytical approach. J. Anim. Ecol. 48, 825849.CrossRefGoogle Scholar
Rogers, D. J. (1980) Dynamics and behaviour of tsetse populations. In Isotope and Radiation Research on Animal Diseases and Their Vectors. In Proc. Symp., Vienna, 7–11 May 1979, pp. 359368. IAEA, Vienna.Google Scholar
Rogers, D. J. (1983) Interpretation of sample data. In Pest and Vector Management in the Tropics (Edited by Youdeowei, A. and Service, M.), pp. 139160. Longman, London.Google Scholar
Rogers, D. J. (1984) The estimation of sampling biases for male tsetse. Insect Sci. Applic. 5, 369373.Google Scholar
Rogers, D. J. (1985) Trypanosomiasis “risk” or “challenge”: a review. Acta Trop. 42, 523.Google ScholarPubMed
Rogers, D. J. and Randolph, S. E. (1984) A review of density-dependent processes in tsetse populations. Insect Sci. Applic. 5, 397402.Google Scholar
Rogers, D. J. and Randolph, S. E. (1986) Distribution and abundance of tsetse flies (Glossina spp.). J. Anim. Ecol. 55, 10071025.CrossRefGoogle Scholar
Rogers, D. J. and Randolph, S. E. (1990) Estimation of rates of predation on tsetse. Med. Vet. Entomol. 4, 195204.CrossRefGoogle ScholarPubMed
Ryan, L. (1981) Glossina (Diptera: Glossinidae) population growth rates. Bull, entomol. Res. 71, 519531.Google Scholar
Skellam, J. G. (1966) Seasonal periodicity in theoretical population ecology. Proc. 5th Berkeley Symp. 4, 179205.Google Scholar
Stiling, P. (1988) Density-dependent processes and key factors in insect populations. J. Anim. Ecol. 57, 581593.CrossRefGoogle Scholar
Southwood, T. R. E. and Reader, P. (1976) Population census data and key factor analysis for the viburnum whitefly, Aleurotrachelus jelinekii. (Frauenf.) on three bushes. J. Anim. Ecol. 45, 313325.CrossRefGoogle Scholar
Southwood, T. R. E., Hassell, M. P., Reader, P. and Rogers, D. J. (1989) The population dynamics of the viburnum whitefly (Aleurotrachelus jelinekii). J. Anim. Ecol. 58, 921942.CrossRefGoogle Scholar
Taylor, P. (1979) The construction of a life-table for Glossina morsitans morsitans Westwood (Diptera: Glossinidae) from seasonal age measurements of a wild population. Bull. entomol. Res. 69, 553560.CrossRefGoogle Scholar
Thompson, W. R. (1931) On the reproduction of organisms with overlapping generations. Bull. entomol. Res. 22, 147172.CrossRefGoogle Scholar
Usher, M. B. (1972) Developments in the Leslie Matrix model. In Mathematical Models in Ecology (Edited by Jeffers, J. N. R.), pp. 2960. British Ecol. Soc. Symp. No. 12. Blackwell Scientific Publications, Oxford.Google Scholar
Vale, G. A. (1977) Feeding responses of tsetse flies (Diptera: Glossinidae) to stationary baits. Bull. entomol. Res. 67, 635649.CrossRefGoogle Scholar
Van Sickle, J. (1988) Invalid estimates of the rate of population increase from Glossina (Diptera: Glossinidae) age distributions. Bull. entomol. Res. 78, 155161.CrossRefGoogle Scholar
Varley, G. C., Gradwell, G. R. and Hassell, M. P. (1974) Insect Population Ecology. Blackwells, Oxford.Google Scholar
Verhulst, P. F. (1838) Notice sur la loi que la population suit dans son accroissement. Corresp. Math. Phys. 10, 113121.Google Scholar