Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T05:34:06.457Z Has data issue: false hasContentIssue false

The effect of photoperiod on the haemolymph protein profile in the silkworm, Bombyx mori L.

Published online by Cambridge University Press:  19 September 2011

S. Janarthanan
Affiliation:
Department of Biotechnology, School of Life Sciences, Bharathidasan University, Tiruchirappalli-620 024, Tamil Nadu, India
K. M. Subbu Rathinam
Affiliation:
Department of Biotechnology, School of Life Sciences, Bharathidasan University, Tiruchirappalli-620 024, Tamil Nadu, India
M. Krishnan
Affiliation:
Department of Biotechnology, School of Life Sciences, Bharathidasan University, Tiruchirappalli-620 024, Tamil Nadu, India
Get access

Abstract

The effect of photoperiod on the haemolymph protein profile in the silkworm, Bombyx mori L. larvae was investigated at photoperiod treatments of light to dark (L:D) ratios of 13:11 (control), 24:0, 18:6, 12:12, 6:18 and 0:24 hours using fifth instar larvae. The intensity of protein bands in haemolymph extracts from larvae was measured with a densitometer. The intensity was highest in the haemolymph from larvae in the 24:0 (L:D) h photoperiod. Strongly reactive antigens of SP-1 and SP-2 and weakly reactive bands of storage proteins for both male and female larvae were observed in the 24:0 (L:D) h photoperiod.

Résumé

L'effet de la photopériode sur le profil protéinique de l'haemolymphe chez la chenille du ver-à-soie, Bombyx mori L. soumise aux traitements photopériodiques de 13L:11D (témoin), 24:0, 18:6, 12:12, 6:18 et 0:24 h a été étudié au niveau des larves du 5ème instar. L'intensité des bandes de protéines dans des extraits d'haemolymphe des larves a été mesurée à l'aide d'un densimètre. La plus forte intensité a été notée au niveau de l'haemolymphe des larves à la photopériode de 24:0 (L:D). Des antigènes fortement réactifs deis bandes SP-1 et SP-2 et des bandes faiblement réactives des protéines de stockage pour les larves mâles et femelles ont été observées à la photopériode de 24:0 (L:D).

Type
Research Articles
Copyright
Copyright © ICIPE 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beck, S. D. (1980) Insect Photoperiodism. 2nd edn.Academie Press, New York.Google Scholar
Benchamin, K. V., Gapuz, V. and Jayaramaraju, P. (1990) Influence of photoperiod on emergence, fecundity and fertility in multivoltine breeds of silkworm, Bombyx mori L. Indian J. Seri. 29, 110118.Google Scholar
Danilevskii, A. S. (1965) Photoperiodism and Seasonal Development of Insects. 1st English edn., Oliver and Boyd, Edinburgh.Google Scholar
El Shaarawy, M. F., Gima, A. A. and Megalla, A. H. (1978) Reaction of photoperiodism on the silkworm, Bombyx mori—2. Consumption, digestion and utilisation of food. Z. Angew Zool. 65, 425434.Google Scholar
Hirasaka, T. and Koyama, N. (1972) Effect of photoperiodic conditions on the larval growth of silkworm, Bombyx mori L. III Relationship between circadian photoperiods and the larval growth. J. Seri. Sci., Japan 41, 6978.Google Scholar
Janarthanan, S., Sathiamoorthi, M., Subburathinam, K. M. and Krishnan, M. (1994) Photoperiod: Its effects on larval-pupal characters, fat body nucleic acids and protein of silkworm, Bombyx mori L. Insect Sci. Applic. 15, 129137.Google Scholar
Kogure, M. (1933) The influence of light and temperature on certain characters of silkworm, Bombyx mori. J. Dep. Agric., Kyushu University 4, 193.Google Scholar
Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227, 680685.CrossRefGoogle ScholarPubMed
Lakhotia, S. C. and Singh, B. N. (1993) A simple and inexpensive “Western-blotting” apparatus. Indian J. Exp. Biol. 31, 301302.Google Scholar
Levenbook, L. (1985) Insect storage proteins. In Comprehensive Insect Physiology, Biochemistry and Pharmacology (Edited by Kerkut, G. A. and Gilbert, L. I.), 10, 307346. Pergamon Press.Google Scholar
Mahanta, H. C. and Choudhury, K. (1989) Role of temperature and photoperiod on growth and development of two Agrotis species (Lepidoptera: Noctuidae). Nutri. Ecol. Ins. Env. 142150.Google Scholar
Nargata, M. and Kobayashi, J. (1990) Quantitative changes in storage proteins during larval development of the silkworm, Bombyx mori. J. Seri. Sci., Japan 59, 461468.Google Scholar
Nijhout, H. F. and Williams, C. M. (1974) Control of moulting and metamorphosis in the tobacco hornworm, Manduca sexta (L): Growth of the last-instar larva and the decision to pupate. J. Exp. Biol. 611, 481491.Google Scholar
Pickens, L. G. and Miller, R. W. (1980) Biology and control of the face fly, Musca autumnalis (Diptera: Muscidae). J. Med. Entomol. 17, 195210.CrossRefGoogle Scholar
Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989) Molecular Cloning. 2nd Edn.Cold Spring Harbor Laboratory Press, New York18, 3.Google Scholar
Tojo, S., Nagata, M. and Kobayashi, M. (1980) Storage proteins in the silkworm, Bombyx mori. Insect Blochem. 10, 289303.CrossRefGoogle Scholar