Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T00:00:30.006Z Has data issue: false hasContentIssue false

Effect of host age, parasitoid age and temperature on interspecific competition between Chelonus insularis Cresson, Cotesia marginiventris Cresson and Microplitis manilae Ashmead

Published online by Cambridge University Press:  19 September 2011

Rohan H. S. Rajapakse
Affiliation:
Department of Entomology and Nematology, University of Florida, Gainsville, FL 32611, USA
Van H. Waddill
Affiliation:
Department of Entomology and Nematology, University of Florida, Gainsville, FL 32611, USA
Tom R. Ashley
Affiliation:
Department of Entomology and Nematology, University of Florida, Gainsville, FL 32611, USA
Get access

Abstract

The effects of host age, age of Cotesia marginiventris Cresson adults and temperature on interspecific competition between fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), larval parasitoids C. marginiventris, Microplitis manilae Ashm. and the egg-larval parasitoid, Chelonus insularis Cresson were studied. All parasitization results for C. marginiventris and M. manilae were from FAW larvae parasitized as eggs by C. insularis. The maximum reproductive potential for C. marginiventris was achieved in hosts initially parasitized by C. insularis and were 36 to 48 hours old and at a temperature of 25°C. No host discrimination was found for C. marginiventris between larvae containing a developing C. insularis and non-parasitized larvae. The optimum parasitoid age for C. marginiventris during the host exposure period was 48 to 96 hr. Younger or older parasitoids were not able to compete as successfully against C. insularis. A sex ratio of approximately 65% males was present in C. marginiventris progeny produced from parents ranging in age from 24 to 108 hr old. Egg to adult development times at 25°C were 17 and 26 days for C. marginiventris and C. insularis, respectively. In multiple parasitized larvae, C. marginiventris appeared to physically attack and destroy the larvae of C. insularis. However, M. manilae larvae died after 6 days without appearing to have been physically attacked in hosts containing C. insularis.

Résumé

Les effets de l'âge de l'hôte, de l'âge des adultes de Cotesia marginiventris Cresson et de la température sur la compétition interspécifique entre les parasitoïdes des larves, C. marginiventris, Microplitis manilae Ashm. et celui des oeufs et des larves, Chelonus insularis Cresson, sur la chenille légionnaire, Spodoptera frugiperda ont été étudiés. Les résultats montrent que le parasitisme au niveau des larves est dû à C. marginiventris tandis que les oeufs sont parasités par C. insularis. Le potentiel maximun de reproduction de C. marginiventris est atteint sur des hôtes initialement parasités par C. insularis âgés entre 36 et 48 heures à la température de 25°C. Aucune discrimination de l'hôte n'est observée par C. marginiventris que les larves soient parasitées ou non par C. insularis. L'âge optimum de C. marginiventris pendant la période d'exposition de l'hôte est de 48 à 96 hr.; des individus jeunes ou plus âgés ne sont pas capables de competir avec succès contre C. insularis. Un sex ratio de 65% environ de mâles est observé dans la descendance de C. marginiventris issue de parents âgés entre 24 et 108 hr. La durée de développement de l'oeuf à l'adulte à 25°C était respectivement de 17 et 26 jours pour C. marginiventris et C. insularis. Au niveau des larves multiparasitées, C. marginiventris attaque et détruit les larves de C. insularis, cependant les larves de M. manilae meurent après 6 jours sans montrer de signes qu'elles ont été attaquées dans des hôtes renfermant C. insularis.

Type
Research Articles
Copyright
Copyright © ICIPE 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashley, T. R. (1979) Classification and distribution of fall army worm parasites. Fla. Entomol. 62, 144153.CrossRefGoogle Scholar
Ashley, T. R. (1983) Growth pattern alterations in fall army worm Spodoptera frugiperda larvae after parasitization by Apanteles marginiventris, Compoletis grioti, Chelonus insularis and Eiphosoma vinicole. Fla. Entomol. 66, 261266.CrossRefGoogle Scholar
Ashley, T. R., Barfield, C. S., Waddill, V. H. and Mitchell, E. R. (1983) Parasitization of fall armyworm larvae on volunteer corn, Bermudagrass and paragrass. Fla. Entomol. 66, 267271.CrossRefGoogle Scholar
Ashley, T. R., Waddill, E. R., Mitchell, E. R. and Rye, J. (1982) Impact ornative parasites on the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) in South Florida and the release of the exotic parasite Eiphosama vitticole (Hymenoptera: Ichneumonidae). Environ. Entomol. 11, 833837.CrossRefGoogle Scholar
Boling, J. C. and Pitre, H. N. (1970) Life history of Apanteles marginiventris with descriptions of immature stages. J. Kans. Entomol. Soc. 43, 465470.Google Scholar
Boller, E. F. and Chambers, D. L. (1977) Quality aspects of mass reared insects. In Biological Control of Augmentation of Natural Enemies (Edited by Ridgeway, R. L. and Vinson, S. B.), pp. 219236. Plenum Press, NY.CrossRefGoogle Scholar
Doutt, R. L. and DeBach, P. (1964) Some biological control concepts & questions. In Biological Control of Insect Pests and Weeds (Edited by DeBach, P. and Schlinger, E.). Reinhold, NY p. 124.Google Scholar
Glogoza, G. (1980) Biology of Chelonus insularis. Biocontrol of insect Lab. USDA-ARS Res. Rep. July-Dec. pp. 7581.Google Scholar
Gross, H. R., Johnson, R., Harreil, E. A. and Perkins, W. D. (1981) Method of separating fall armyworm eggs from masses. J. econ. Entomol. 74, 122123.CrossRefGoogle Scholar
Keller, M. (1980) Effects of temperature and corn phenology on FAW biology. M.Sc. Thesis, Dept. of Entomology and Nematology, University of Florida, pp. 83.Google Scholar
Kunnalaca, S. and Muller, A. J. (1979) A laboratory study of Apanteles marginiventris, a parasite of green cloverworm. Environ. Entomol. 8, 365368.CrossRefGoogle Scholar
Leppla, N. C., Vail, P. V. and Rye, J. R. (1979) Mass rearing and handling techniques for the cabbage looper. Proc. Radio Isotopes and Radiation in Entomology Training Course. FAOV/IAEA. pp. 5975.Google Scholar
Loke, W. H. and Ashley, T. R. (1984) Behavioural and biological responses of Cotesia marginiventris to kairomones of the fall armyworm Spodoptera frugiperda. J. Chem. Ecol. 10, 521529.CrossRefGoogle Scholar
Mitchell, E. R., Waddill, V. H. and Ashley, T. R. (1984) Population dynamics of the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) and its larval parasites on whorl stage corn in pheromone permeated field environments. Environ. Entomol. 13, 16181623.CrossRefGoogle Scholar
Pemberton, C. E. and Willard, H. F. (1918) Interrelations of fruit fly parasites in Hawaii. J. Agric. Res. 15, 419465.Google Scholar
Rechav, Y. (1978) Biological and ecological studies of the parasitoid Chelonus inanitus (Hymenoptera: Braconidae) in Israel. Entomophaga 23, 95102.CrossRefGoogle Scholar
Sparks, A. N. (1979) A review of biology of fall armyworm. Fla. Entomol. 62, 8287.CrossRefGoogle Scholar
Vinson, S. B. and Abies, J. R. (1980) Interspecific competition among endoparasitoids of tobacco budworm larvae (Lepidoptera: Noctuidae). Entomophaga 25, 357362.CrossRefGoogle Scholar
Wallner, W., Weseloh, R. M. and Grinberg, P. S. (1982) Intrinsic competition between Apanteles marginiventris (Hymenoptera: Braconidae) and Rogas lymantriae (Hymenoptera: Braconidae) reared on Lymantria dispar (Hymenoptera: Lymantriidae). Entomophaga 27, 99103.CrossRefGoogle Scholar