Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-15T17:11:54.007Z Has data issue: false hasContentIssue false

Chemical additives that affect the potency of endotoxin of Bacillus thuringiensis against Plodia interpunctella

Published online by Cambridge University Press:  19 September 2011

A. El-Moursy
Affiliation:
Faculty of Science, Cairo University, Cairo, Egypt
R. Aboul-Ela
Affiliation:
Faculty of Science, Cairo University, Cairo, Egypt
H. S. Salama
Affiliation:
National Research Centre, Tahrir St., Dokki, Cairo, Egypt
A. Abdel-Razek
Affiliation:
National Research Centre, Tahrir St., Dokki, Cairo, Egypt
Get access

Abstract

Biochemical approaches have been used to enhance the potency of Bacillus thuringiensis against Plodia interpunctelia. Tests were made with different classes of chemical compounds, characterizedby being safe, non-toxic to man, and cheap in price. Among the tested inorganic salts, calcium carbonate, calcium oxide and zinc sulphate were found to increase the potency of B. thuringiensis δ-endotoxin by 2.5-, 1.9- and 2.7-fold, respectively. With the nitrogenous compounds, the amino acids serlne, arginine, alanine and teucine enhanced the endotoxin effect by 52-, 3.6-, 13- and 1.1-fold, respectively. Also, among the protein solubilizing agents, EDTA and sodium thloglycollate led to a 100- and 2.6-fold Increase in the potency. Formic acid was highly effective among the organic acids used in enhancing the potency, followed by malk acid, with 4.8- and 2.4-fold increase, respectively.

Résumé

Une approche bio-medical a été utilisé pour amellorer la puissance de Bacillus thuringiensis contre la mitte Indienne Plodia interpunctella. Des analyses ont été faites avec des classes de composition chimique characterisé par leur aspect sain. Entre les sets analyses le carbonate de calcium et l'oxide de calcium et la sulphate de zinc ont augmenté la puissance de B. thuringiensis δ-endotoxin par 2, 5, 2, 7 et 1, 9, respectivement. Avec les composition (azotique) les acide amino, la serine, l'arginine, l'alanine et le leucine ont améliore l'effet par par 5, 2, 3, 6, 1, 1 et 1, 3 respectivement. Aussi avec les agents de solubilisation de proteine, EDTA et le thioglycollate de sodium ont augmenté la puissance par 100- et 2, 6 fols. L'acide fourmique a été très efficace parmi les acides organiques qui ont été utilise pour ameliorer la puissance suivi par l'acid malic par 4, 8 et 2, 4 fois, respectivement.

Type
Research Articles
Copyright
Copyright © ICIPE 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbott, W. S. (1925) A method of computing effectiveness of insecticides. J. econ. Entomol. 18, 265267.CrossRefGoogle Scholar
Burges, H. D. (1977) Control of wax moth Galleria mellonella on beecomb by H-serotype Bacillus thuringiensis and the effect of chem ical additives. Apidologie 8, 155168.CrossRefGoogle Scholar
Chapman, R. F. (1974) The chemical inhibition of feeding by phytophagous insects: A review. Bull. Entomol. Res. 64, 339363.CrossRefGoogle Scholar
Charless, C. D. and Wallis, R. (1964) Enhancement of the action of Bacillus thuringiensis var. thuringiensis on Porthetria dispar (Linn.) in laboratory tests. J. Insect Pathol. 6, 423429.Google Scholar
Chippendale, G. M. (1970) Development of artificial diets for rearing the angoumois grain moth. J. econ. Entomol. 63, 844848.CrossRefGoogle Scholar
Couch, Te. L. and Ross, D. A. (1980) Production and utilization of Bacillus thuringiensis. Biotechnol. Bioengin. 22, 12971304.CrossRefGoogle Scholar
Dixon, M. and Webb, E. C. (1964) Enzymes. Academic Press Inc., New York, pp. 6770.Google Scholar
Dulmage, H. T., Boening, O., Rehenborg, C. and Hansen, G. (1971) A proposed standardized bioassay for formulations of Bacillus thuringiensis based on the international unit. J. Invertebr. Pathol. 18, 240245.CrossRefGoogle ScholarPubMed
Guerra, A. A. (1970) Effect of biologically active substances in the diet on the development and reproduction of Heliothis spp. J. econ. Entomol. 63, 15181521.CrossRefGoogle Scholar
Heimpel, A. M. and Angus, T. A. (1959) The site of action of crystaliferous bacteria in- Lepidoptera larvae. J. Insect Pathol. 1, 152170.Google Scholar
Lecadet, M. M. and Martouret, D. (1965) Theenzymatic hydrolysis of Bacillus thuringiensis Berliner crystals of the liberation of toxic fractions of bacterial origin by the cycle of Pieris brassicçe. J. Invertebr. Pathol. 7, 105108.CrossRefGoogle Scholar
Nickerson, K. W. (1980) Structure and function of Bacillus thuringiensisprotein c Tysta. Biotechnol. Bioeng. 22, 13051333.CrossRefGoogle Scholar
Salama, H. S., Foda, M. A. and Sharaby, A. (1984) Novel biochemical avenues for enhancing Bacillus thuringiensis endotoxin potency against Spodoptera littoralis (Lep.: Noctuidae). Entomophaga 29, 171178.CrossRefGoogle Scholar
Salama, H. S., Foda, M. S. and Sharaby, A. (1985) Potential of some chemicals to increase the effectiveness of Bacillus thuringiensis Berl. against Spodoptera littoralis (Boisd.). Z. angew. Entomol. 100, 425433.CrossRefGoogle Scholar
Salama, H. S., Foda, M. S. and Sharaby, A. (1986) Possible extension of the activity spectrum of Bacillus thuringiensis through chemical additives. J. appl. Entomol. 101, 304313.CrossRefGoogle Scholar
Salama, H. S., Foda, M. S. and Sharaby, A. (1989) Potentiation of B. thuringiensis endotoxin against the greasy cutworm Agrotis ypsilon. J. Appl. Entomol. 108, 372380.CrossRefGoogle Scholar
Salama, H. S., El-Moursy, A., Aboul-Ela, R. and Abdel-Razek, A. (1991, under publication) Potency of different varieties of Bacillus thuringiensis (Berliner) against some lepidopterous stored product pests.CrossRefGoogle Scholar
Smirnoff, W. A. (1974) The symptoms of infection by Bacillus thuringiensis + chitinase formulation in larvae of Choristoneura fumiferana. J. Invertebr. Pathol. 23, 397399.CrossRefGoogle ScholarPubMed
Wigglesworth, V. B. (1972) The Principles of Insect Physiology. London: English Language Book Society, Chapman and Hall.CrossRefGoogle Scholar
Yadava, R. L. (1971) On the chemical stressors of nuclear polyhedrosis virus of gypsy moth, Lymantria dispar L. Z. angew. Entomol. 69, 303311.CrossRefGoogle Scholar