Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-01T15:59:05.908Z Has data issue: false hasContentIssue false

Characterization of antigens from extracts of fed ticks using sera from rabbits immunized with extracted tick antigen and by successive tick infestation

Published online by Cambridge University Press:  19 September 2011

A. O. Mongi
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
S. Z. Shapiro
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya
J. J. Doyle
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya
Get access

Abstract

Immune resistance to infestation by an ixodid tick, Rhipicephalus appendiculatus, the vector of the African cattle disease, East Coast Fever, was induced in rabbits by either repeated tick feeding or immunization with tick extracts. In addition to resistance to tick infestation, tick extract immunization led to a reduction in the viability of eggs laid by ticks feeding on the immunized host. Resistance to infestation by ixodid ticks has previously been reported by others to have a humoral immune component. Therefore, antibodies from resistant host animals were used to detect the tick antigens they recognized as an approach to identification of the target antigen(s) for the observed immune responses on feeding ticks. In crossed immune electrophoresis two antigens were detected using sera from animals made resistant by multiple tick infestations. Sera from extract immunized animals detected these antigens and nine others. The tick antigens detected by both sets of sera in crossed immune electrophoresis were radiolabelled with [35S]amino acids. No labelled antigens were detected by Staphylococcus aureus mediated immune precipitation with sera from hosts made resistant by multiple infestations. Antibodies from extract-immunized animals identified nine protein antigens by S. aureus immunoprecipitation. The molecular weights of these antigens as assessed by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis were 180,000; 140,000; 130,000; 98,000; 92,000; 88,000; 85,000 and 82,000. The rate of synthesis of these antigens appeared to vary in relation to the tick feeding cycle.

Résumé

La resistance immunitaire à l'infestation par les tiques Rhipicephalus appendiculatus vecteur de la fièvre costale est-africaine chez le bétail, est induite chez le lapin aussi bien par piqûre répétée des tiques sur l'animal que par immunisation avec des extraits des tiques. En plus de la resistance à l'infestation par les tiques, l'extrait d'immunisation provoque une reduction de la viabilité des oeufs produits par des tiques nourries sur des animaux immunisés. La resistance à l'infestation par des tiques (ixodides) a déjà été rapporté par d'autres comme etant un composé humoral immunitaire. Aussi les anticorps provenant des animaux resistants furent utilisés pour détecter les antigènes des tiques qui'ls reconnaissent comme approche pour l'identification des antigènes cibles pour l'observation des réponses immunitaires sur des tiques s'alimentant. Par immunoélectrophorèse croisée on a détecté des antigènes en utilisant des sera provenant des animaux rendus résistants par des multiples infestations par des tiques.

Les sera provenant des extraits d'animaux immunisés détectent ces antigènes en plus de neuf autres. Les antigenes des tiques détectés par les deux lots de sera en immunoélectrophorèse croisée ont été marqués avec les [35S]acides aminés. Aucun marquage d'antigènes n'a été détecté par Staphylococcus aureus dirigeant une précipitation immunologigue avec les sera provenant des animaux hotes rendus resistants par des multiples infestations. Les anticorps provenant des animaux immunisés par des extraits des tiques parviennent à identifier neuf antigènes par immunoprecipitation avec S. aureus Les poids moléculaires de ces antigènes révélés par electrophorèse en SDS en gel de plyacrylamide sont respectivement de 180.000; 140.000; 130.000; 98.000; 92.000; 88.000; 85.000 and 82.000. Le taux de synthèse de ces antigènes semblent varier en relation avec le cycle de piqûre des tiques.

Type
Research Articles
Copyright
Copyright © ICIPE 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ackerman, S., Floyd, M. and Sonenshine, D. E. (1980) Artificial immuniy to Dermacentor variabilis (Acari: Ixodidae): Vaccination using tick antigens. J. med. Ent. 17, 391397.CrossRefGoogle Scholar
Ackerman, S., Brian Clare, F., McGill, T. W. and Sonenshine, D. E. (1981) Passage of host serum components, including antibody, across the digestive tracts of Dermacentor variabilis (Say). J. Parasit. 67, 737740.CrossRefGoogle Scholar
Allen, J. R., Doube, B. M. and Kemp, D. H. (1977) Histology of bovine skin reactions to Ixodes holocyclus. Can. J. comp. Med. 41, 2636.Google ScholarPubMed
Allen, J. R. and Humphreys, S. J. (1979) Immunization of guinea pigs and cattle against ticks. Nature 280, 491493.CrossRefGoogle ScholarPubMed
Askenase, P. W. (1980) Immunopathology of parasitic diseases: Involvement of basophils and mast cells. Immunopathology 2, 417442.Google Scholar
Askenase, P. W., Bagnali, B. G. and Worms, M. J. (1982) Cutaneous basophil associated resistance to ectopharasites (ticks). I. Transfer with immune serum or immune cells. Immunology 45, 501511.Google ScholarPubMed
Bailey, K. P. (1960) Notes on the rearing of Rhipicephalus appendiculatus and their infection with Theileria parva for experimental transmission. Bull. epizoot. Dis. Afr. 8, 3343.Google Scholar
Balashov, Y. S. (1972) Bloodsucking ticks (Ixodoidea)—vectors of disease of man and animals. Misc. Publ. ent. Soc. Am. 8, 161376.Google Scholar
Bell, J. F. (1945) The infection of ticks (Dermacentor variabilis) with Pasturella tularensis. J. infect. Dis. 76, 8395.CrossRefGoogle Scholar
Bell, J. F., Steward, S. J. and Wikel, S. K. (1979) Resistance to tick-borne Francisella tularensis by tick-sensitized rabbits: Allergic klendusity. Am. J. trop. Med. Hyg. 28, 876880.CrossRefGoogle ScholarPubMed
Bowessidjaou, J., Brossard, M. and Aeschhmann, A. (1977) Effects and duration of resistance acquired by rabbits on feeding and egg laying in Ixodes ricinus L. Experientia 33, 528530.CrossRefGoogle ScholarPubMed
Bram, R. A. (1975) Tick-borne livestock diseases and their vectors. I. The global problem. Wld A. Rev. 16, 15.Google Scholar
Brossard, M. (1976) Relations immunologiques entre bovins et tiques, plus particulièrement entre bovins et Boophilus microplus. Acta trop. 33, 1536.Google ScholarPubMed
Brown, S. J., Graziano, F. M. and Askenase, P. W. (1982) Immune serum transfer of cutaneous basophil-associated resistance to ticks: Mediation by 7S lgG1, antibodies. J. Immun. 129, 24072412.CrossRefGoogle Scholar
Brown, S. J., Shapiro, S. Z. and Askenase, P. W. (1984) Characterization of tick antigens inducing host immune resistance. I. Immunization of guinea pigs with Amblyomma americanum-derived salivary gland extracts and identification of an important salivary gland protein antigen with guinea pig anti-tick antibodies. J. Immun. 133, 33193325.CrossRefGoogle ScholarPubMed
Chiera, J. W., Newson, R. M. and Cunningham, M. P. (1985) Cumulative effects of host resistance on Rhipicephalus appendiculatus Neumann (Acarina: Ixodiadae) in the laboratory. Parisitology 90, 401408.CrossRefGoogle Scholar
Francis, J. and Little, D. A. (1964) Resistance of Drought-master cattle to tick infestation and babesiosis. Aust. vet. J. 40, 247253.CrossRefGoogle Scholar
Fujisaki, K. (1978) Development of acquired resistance and precipitating antibody in rabbits experimentally infested with females of Haemaphysalis longicomis (Ixodoidea:Ixodidae). Natn. Inst. Anim. Hlth Quart. 18, 2738.Google Scholar
Garin, A. S. and Grabarev, P. Á. (1972) Protective reactions in rabbits and guinea pigs when repeatedly exposed to Rhipicephalus appendiculatus (Latr. 1806) ticks. Medit. Parazit. Parazit. Bolezni 41, 274279.Google Scholar
Harrington, J. C., Fenton, J. W. and Pert, J. H. (1971) Polymer-induced precipitation of antigen-antibody complexes: ‘Precipiplex’ reactions. Immunochemistry 8, 413421.CrossRefGoogle ScholarPubMed
Irvin, A. D. and Brocklesby, D. W. (1970) Rearing and maintaining Rhipicephalus appendiculatus in the laboratory. J. Inst. Anim. Techn 21, 106112.Google Scholar
Kessler, S. W. (1975) Rapid isolation of antigens from cells with à Staphylococcal protein A-antibody adsorbent: parameters of the interaction of antibody-antigen complexes with proteinA. J. Immun. 115, 16171624.CrossRefGoogle Scholar
Kohler, G., Hoffman, G., Horchner, F. and Weiland, G. (1972) Immunbiologische Untersuchungen an Kaninchen mit Ixodiden-Infestationen. Munch. Tieraerztl. Wochenschr. 80, 396400.Google Scholar
Lindmark, R., Thoren-Tolling, K. and Sjoquist, J. (1983) Binding of immunoglobulins to protein A and immunoglobulin levels in mammalian sera. J. immun. Meth. 62, 113.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) Protein measurement with thé Folin phenol reagent. J. biol. Chem. 193, 265275.CrossRefGoogle ScholarPubMed
Maizel, J. V. Jr (1971) Polyacrylamide gel electrophoresis of viral proteins. Meth. Virol. 5, 179246.CrossRefGoogle Scholar
Newson, R. M. and Castro, J. J. de (1983) Host resistance fo R. appendiculatus infestation and transmission of T. parva. ICIPE Ann. Rpt 11, 33.Google Scholar
Nogge, G. and Giannetti, M. (1980) Specific antibodies: A potential insecticide. Science 209, 10231029.CrossRefGoogle ScholarPubMed
Ouchterlony, O. (1958) Diffusion-in-gel methods for immunological analysis. In Progress in Allergy (Edited by Kallos, P.), Vol. 5, pp. 178. Karger, Basel.Google Scholar
Riek, R. F. (1962) Studies on the reactions of animals to infestation with ticks. VI. Resistance of cattle to infestation with the tick Boophilus microplus (Canestrini). Aust. J. agric. Res. 13, 532550.CrossRefGoogle Scholar
Roberts, J. A. and Kerr, J. D. (1976) Boophilus microplus: Passive transfer of resistance in cattle. J. Parasit. 62, 485488.CrossRefGoogle ScholarPubMed
Shapiro, S. Z. and Young, J. R. (1981) An immunochemical method for mRNA purification: Application to messenger RNA encoding trypanosome variable surface antigen. J. biol. Chem. 256, 14951498.CrossRefGoogle ScholarPubMed
Solomon, K. R. (1983) Acaricide resistance in ticks. Adv. Vet. Sci. comp. Med. 27, 273296.Google ScholarPubMed
Steelman, C. D. (1976) Effects of external and internal arthropod parasites on domestic livestock production. A. Rev. Ent. 21, 155178.CrossRefGoogle ScholarPubMed
Trager, W. (1939) Acquired immunity to ticks. J. Parasit. 25, 5781.CrossRefGoogle Scholar
Weeke, B. (1973) Crossed immunoelectrophoresis. Scand. J. Immun, suppl. 1 2, 4756.CrossRefGoogle Scholar
Wharton, R. H. (1976) Tick-borne livestock diseases and their vectors. V. Acaricide resistance and alternative methods of tick control. Wld A. Rev. 20, 815.Google Scholar
Whelan, A. C., Richardson, A. C. and Wikel, S. K. (1984) Ixodid tick antigens recognized by the infested host.: Immunoblotting studies. IRCS med. Sci. 12, 901911.Google Scholar
Wikel, S. K. (1980) Host resistance to tick-borne pathogens by virtue of resistance to tick infestation. Ann. trop. Med. Parasit. 74, 103104.CrossRefGoogle ScholarPubMed
Wikel, S. K. (1981) The induction of host resistance to tick infestation with a salivary gland antigen. Am. J. trop. Med. Hyg. 30, 284288.CrossRefGoogle ScholarPubMed
Wikel, S. K. and Allen, J. R. (1982) Immunological basis of host resistance to ticks. In Physiology of Ticks (Edited by Obenchain, F. D. and Galun, R.), pp. 169196. Pergamon Press, Oxford.CrossRefGoogle Scholar
Willadsen, P. (1980) Immunity to ticks. Adv. Parasit. 18, 239313.Google ScholarPubMed