Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T04:04:51.999Z Has data issue: false hasContentIssue false

Amylolytic enzymes from the digestive tract of the giant cricket Brachytrupes membranaceus (Orthoptera: Gryllidae): enzymatic profiles and biochemical characteristics of activities

Published online by Cambridge University Press:  01 September 2010

Eugène Jean Parfait Kouadio*
Affiliation:
Laboratoire de Biochimie et Technologie des Aliments de l'Unité de Formation et de Recherche en Sciences et Technologie des Aliments de l'Université d'Abobo-Adjamé, 02 BP 801, Abidjan 02, Ivory Coast
Edmond Ahipo Dué
Affiliation:
Laboratoire de Biochimie et Technologie des Aliments de l'Unité de Formation et de Recherche en Sciences et Technologie des Aliments de l'Université d'Abobo-Adjamé, 02 BP 801, Abidjan 02, Ivory Coast
Soumaïla Dabonné
Affiliation:
Laboratoire de Biochimie et Technologie des Aliments de l'Unité de Formation et de Recherche en Sciences et Technologie des Aliments de l'Université d'Abobo-Adjamé, 02 BP 801, Abidjan 02, Ivory Coast
Olivier Assoi Etchian
Affiliation:
Laboratoire de Biologie et de Cytologie Animales de l'Unité de Formation et de Recherche en Sciences de la Nature de l'Université d'Abobo-Adjamé, 02 BP 801, Abidjan 02, Ivory Coast
Lucien Patrice Kouamé
Affiliation:
Laboratoire de Biochimie et Technologie des Aliments de l'Unité de Formation et de Recherche en Sciences et Technologie des Aliments de l'Université d'Abobo-Adjamé, 02 BP 801, Abidjan 02, Ivory Coast
*
Get access

Abstract

The activity of a crude enzyme preparation extracted from hepatopancreas in the digestive tract of the giant cricket Brachytrupes membranaceus (Drury) was assayed for amylase and α-glucosidase. Amylase- and α-glucosidase-specific activities were estimated to be 3.31 and 13.02 UI/mg, respectively. The zymogram analysis of the crude enzymatic extract showed the existence of two isoforms of amylase. For α-glucosidase, the zymogram analysis showed one form only. Both the amylolytic activities exhibited optimum pH at 6.6 and 7.0, respectively, for amylase and α-glucosidase. As for optimum temperature, values were estimated at 55 and 40 °C for amylase and α-glucosidase activities, respectively. Amylase activity was found to be stable at pH 6.6–7.6 and temperatures up to 55 °C. The corresponding values for α-glucosidase were pH 6–7 and up to 40 °C. Amylolytic enzymes of B.membranaceus were activated by Ca2+ and Ba2+ and inhibited by chemical agents such as ethylenediaminetetraacetic acid, 4-chloromercuribenzoic acid and dithionitrobenzoic acid. The analysis of hydrolytic products after soluble starch hydrolysis by the enzyme preparation from the digestive tract of B. membranaceus by thin layer chromatography revealed that glucose and maltose were the major products. The present study showed that these amylolytic enzymes play a fundamental role in energy production for this insect.

Type
Research Paper
Copyright
Copyright © ICIPE 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Applebaum, S. W. and Konijn, A. M. (1965) The utilization of starch by larvae of the Xour beetle, Tribolium castaneum. Journal of Nutrition 85, 275282.CrossRefGoogle Scholar
Baker, J. E. (1991) Purification and partial characterization of α-amylase alloenzymes from the lesser grain borer, Rhizopertha dominica. Insect Biochemistry 21, 303311.CrossRefGoogle Scholar
Bernfeld, P. (1955) Amylases α and β, pp. 149154. In Methods in Enzymology (edited by Colowick, S. P. and Kaplan, N. O.). Academic Press, New York.CrossRefGoogle Scholar
Buonocore, V., Poerio, E., Silvano, V. and Tomasi, M. (1976) Physical and catalytic properties of α-amylase from Tenebrio molitor L. larvae. Biochemistry Journal 153, 621625.CrossRefGoogle ScholarPubMed
Campos, F. A. P., Xavier-Filho, J., Silva, C. P. and Ary, M. B. (1989) Resolution and partial characterization of proteinases and α-amylases from midguts of larvae of the bruchid beetle Callosobruhus maculatus (F.). Comparative Biochemistry Physiology 92B, 5157.Google Scholar
Chiffaud-Mestre, J. and Gillon, Y. (1985) Traits généraux et composition du peuplement des grillons de la savane de Lamto (Côte d'Ivoire) brûlée et non brûlée (Orthoptera, Gryllidae). Annals de la Société Entomologique de France (N.S.) 21, 307316.CrossRefGoogle Scholar
Cinco-Moroyoqui, F. J., Diaz-Malvaez, F. I., Alanis-Villa, A., Baron-Hoyos, J. M., Cardenas-Lopez, J. L., Cortez-Rocha, M. O. and Wong-Corral, F. J. (2008) Isolation and partial characterization of three isoamylases of Rhyzopertha dominca F. (Coleoptera: Bostrichidae). Comparative Biochemistry and Physiology 150B, 153160.CrossRefGoogle Scholar
Dojnov, B., Bozic, N., Nenadovic, V., Ivanovic, J. and Vujcic, J. (2008) Purification and properties of midgut amylase isolated from Morimus funereus (Coleoptera: Cerambycidae). Comparative Biochemistry and Physiology 149B, 153160.CrossRefGoogle Scholar
Dué, A. E., Kouadio, J. P. E. N., Kouakou, H. T., Dabonné, S., Niamké, S. L. and Kouamé, L. P. (2008) Purification and physicochemical properties of alpha amylase from cockroach, Periplaneta americana (Linnaeus), for starches saccharification. African Journal of Biotechnology 7, 27072716.Google Scholar
Dunkel, F. V. (1996) Nutritional value of various insects per 100 grams. Food Insects Newsletter 9, 18.Google Scholar
Franco, O. L., Rigden, D. J., Melo, F. R. and Grossi-de-Sá, M. F. (2002) Plant α-amylase inhibitors and their interaction with insect α-amylases: structure, function and potential for crop protection. European Journal of Biochemistry 269, 397412.CrossRefGoogle Scholar
Gidenne, T., Segura, M. and Lapanouse, A. (2005) Effect of cereal sources and processing in diets for the growing rabbit. I. Effects on digestion and fermentative activity in the caecum. Animal Research 54, 5564.CrossRefGoogle Scholar
Kato, S., Shimisu-Ibuka, A., Mura, K., Takeuch, A., Tokue, C. and Arai, S. (2007) Molecular cloning and characterization of α-amylase from Pichia burtonü. Bioscience Biotechnology Biochemistry 71, 30073013.CrossRefGoogle Scholar
Kouamé, L. P., Dué, A. E., Niamké, S. L., Kouamé, F. A. and Kamenan, A. (2005) Synthèses enzymatiques de néoglucoconjugués catalysées par l’α-glucosidase purifiée de la blatte Periplaneta americana (Linnaeus). Biotechnologie Agronomie Société Environnement 9, 3542.Google Scholar
Kunieda, T., Fujiyuki, T., Kucharski, R., Foret, S., Ament, S. A., Toth, A. L., Ohashi, K., Takeuchi, H., Kamikouchi, A., Kage, E., Morioka, M., Beye, M., Kubo, T., Robinson, G. E. and Maleszka, R. (2006) Carbohydrate metabolism genes and pathways in insects: insights from the honey bee genome. Insect Molecular Biology 15, 563576.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of head of bateriophage T4. Nature 227, 680685.CrossRefGoogle Scholar
Lemos, F. J. A., Campos, F. A. P., Silva, C. P. and Xavier-Filho, J. (1990) Proteinases and amylases of larval midgut of Zabrotes subfasciatus reared on cowpea (Vigna unguiculata) seeds. Entomology Experimental and Applied 56, 219227.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) Protein measurement with the folin-phénol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Mandal, S., Choudhuri, A. and Choudhuri, D. K. (1983) Activity and distribution of five digestive enzymes in the gut of Gryllotalpa gryllotalpa curtis (Gryllotalpidae: Orthoptera) after allatectomy, brain cauterization and juvenoid treatment. Australian Journal of Zoology 31, 139146.CrossRefGoogle Scholar
Marchaiah, J. P. and Vakil, U. K. (1984) Isolation and partial characterisation of α-amylase components evolved during early wheat germination. Journal of Biosciences 6, 4759.CrossRefGoogle Scholar
Mehrabadi, M., Bandani, A. R., Saadati, F. and Sultan, R. S. (2009) Sunn pest, Eurygaster integriceps Putton (Hemiptera: Scutelleridae), digestive α-amylase, α-glucosidase and β-glucosidase. Journal of Asia-Pacific Entomology 2, 279283.Google Scholar
Mendiola-Olaya, E., Valencia-Jiménez, A., Valdes-Rodriguez, S., Delano-Frier, J. and Branco-Labra, A. (2000) Digestive amylase from the larger grain borer, Prostephanus truncatus Horn. Comparative Biochemistry and Physiology 126B, 425433.CrossRefGoogle Scholar
Nakonieczny, M., Michalczyk, K. and Kedziorski, A. (2006) Midgut glycosidases activities in monophagous larvae of the Apollo butterfly, Parnassius apollo ssp. frankenbergeri. The Comptes Rendus Biologies 329, 765774.CrossRefGoogle ScholarPubMed
Nijhout, H. F. (2003) The control of body size in insects. Developmental Biology 261, 19.CrossRefGoogle ScholarPubMed
Nishimoto, M., Kubota, M., Tsuji, M., Mori, H., Kimura, A., Matsui, H. and Chiba, S. (2001) Purification and substrate specificity of honeybee, Apis mellifera L., α-gluosidase III. Bioscience, Biotechnology and Biochemistry 65, 16101616.CrossRefGoogle ScholarPubMed
Pelegrini, P. B., Murad, A. M., Grossi-de-Sá, M. F., Mello, L. V., Romeiro, L. A. S., Noronha, E. F., Caldas, R. A. and Franco, O. L. (2006) Structure and enzyme properties of Zabrotes subfasciatus α-amylase. Archives of Insect Biochemistry and Physiology 61, 7786.CrossRefGoogle ScholarPubMed
Podoler, H. and Applebaum, S. W. (1971) The α-amylase of the beetle Callosobruchus chinensis properties. Biochemistry Journal 121, 321325.CrossRefGoogle Scholar
Sivakumar, S., Mohan, M., Franco, O. L. and Thayumanavan, B. (2006) Inhibition of insect pest α-amylases by little and finger millet inhibitors. Pesticide Biochemistry Physiology 85, 155160.CrossRefGoogle Scholar
Strobl, S., Gomis-Rüth, F.-X., Maskoss, K., Frank, G., Huber, R. and Glocksuber, R. (1997) The α-amylase from the yellow meal worm: complete primary structure, crystallization and preliminary X-ray analysis. FEBS Letters 409, 109114.CrossRefGoogle ScholarPubMed
Takewaki, S, Chiba, S., Kimura, A., Matsui, H. and Koike, Y. (1980) Purification and properties of α-glucosidases of the honeybee Apis mellifera L. Agriculture Biology Chemistry 44, 731740.Google Scholar
Tanamura, T., Kitamura, K., Fukuda, T. and Kikuchi, T. (1979) Purification and partial characterization of three forms of alpha-glucosidase from the fruit fly Drosophila melanogaster. Journal of Biochemistry 85, 123130.CrossRefGoogle Scholar
Teo, L. H. and Woodring, J. P. (1994) Comparative total activities of digestive enzymes in different gut regions of the house cricket, Acheta domesticus L. (Orthoptera: Gryllidae). Annals of the Entomological Society of America 87, 886890.CrossRefGoogle Scholar
Terra, W. R., Ferreira, C., Jordao, B. P. and Dillon, R. J. (1996) Digestives enzymes, pp. 153194. In Biology of the Insect Midgut (edited by Lehane, M. J. and Billingsley, P. F.). Chapman & Hall, London.CrossRefGoogle Scholar
Wongchawalit, J., Yamanoto, T., Nakai, H., Kim, Y.-M., Sato, N., Nishimoto, M., Okuyama, M., Mori, H., Saji, O., Chanchao, C., Wongsiri, S., Surarit, R., Svasti, J., Chiba, S. and Kimura, A. (2006) Purification and characterization of α-glucosidase I from Japanese honeybee (Apis cerana japonica) and molecular cloning of its cDNA. Bioscience, Biotechnology and Biochemistry 70, 28892898.CrossRefGoogle ScholarPubMed
Zoltowska, K. (2001) Purification and characterization of alpha-amylases from intestine and muscle of Ascaris suum (Nematoda). Acta Biochimica Polonica 48, 763774.CrossRefGoogle ScholarPubMed