Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T01:59:02.247Z Has data issue: false hasContentIssue false

Abundance, population dynamics and impact of the leucaena psyllid Heteropsylla cubana Crawford in a maize-leucaena agroforestry system in Kenya

Published online by Cambridge University Press:  19 September 2011

Callistus K. P. O. Ogol*
Affiliation:
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
John R. Spence
Affiliation:
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
*
*Corresponding author: CKPOO.
Get access

Abstract

We monitored abundance, population dynamics and damage impacts of the leucaena psyllid Heteropsylla cubana Crawford (Homoptera: Psyllidae) in a maize-leucaena agroforestry system. The abundance of local ladybird beetle predator populations were also evaluated. The studies were conducted between June 1993 and November 1995 at Mtwapa and Amoyo in coastal and western Kenya respectively. Alley-cropping leucaena with maize had no effect on the abundance of the leucaena psyllid or its coccinellid predators. Therefore, neither the ‘resource concentration’ hypothesis nor the ‘enemies’ hypothesis corroborated for the psyllid-leucaena system within the spatial scale of this study. Psyllid populations were generally much higher at Mtwapa than at Amoyo, suggesting possible environmental effects on population growth. Psyllid populations were influenced by weather (mainly rainfall) and availability of suitable shoots. New growth of young shoots following rainfall encouraged psyllid abundance as long as weather conditions were not extreme. Though population of the generalist ladybird beetles was correlated with that of its psyllid prey, beetles did not appear to have significant effect on prey populations.

Résumé

Nous avons observé l'abondance, la dynamique des populations et les impacts des dommages du psylidé du leucaena Heteropsylla cubana Crawford (Homoptera: Psyllidae) dans un système d'agroforesterie maïs-leucaena. L'abondance des populations d'un coléoptère coccinellidé prédateur local a été aussi évaluée. Les études ont été menées entre juin 1993 et novembre 1995 à Mtwapa et Amoyo, respectivement dans les régions cotière et occidentale du Kenya. La culture en allée du leucaena avec le maïs n'a pas eu d'effet sur l'abondance du psylidé du leucaena ou ses prédateurs coccinellidés. Par conséquent, ni l'hypothèse de ‘concentration de ressources’ ni celle d'ennemis' n'a corroboré le système psylidé-leucaena à l'échelle spatiale de cette étude. Les populations des psylidés étaient généralement plus élevées à Mtwapa qu'à Amoyo, suggérant la possibilité des effets environnementaux sur la croissance des populations. Les populations des psylidés étaient influencées par le climat (principalement la pluviosité) et la disponibilité des pousses appropriées. La nouvelle croissance de jeunes pousses favorisait l'abondance des psylidés aussi longtemps que les conditions climatiques n'étaient pas extrèmes. Bien qu'il y avait une corrélation entre la population des coccinelidés généralistes et celle du psylidé proie, les colléoptères ne semblèrent pas avoir un effet significatif sur les populations des proies.

Type
Research Articles
Copyright
Copyright © ICIPE 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andow, D. A. (1986) Plant diversification and insect population control in agroecosystems, pp. 277386. In Some Aspects of Integrated Pest Management (Edited by Pimentel, D.). Dept. Entomology, Cornell University, Ithaca, NY.Google Scholar
Andow, D. A. (1988) Management of weeds for insect manipulation in agroecosystems, pp. 265301. In Weed Management in Agroecosystems: Ecological Approaches (Edited by Altieri, M. A. and Liebman, M.). CRC, Boca Raton, Fla.Google Scholar
Andow, D. A. (1991) Yield loss to arthropods in diverse agroecosystems. Environ. Entomol. 10, 12281235.CrossRefGoogle Scholar
Azage, T. (1995) Leucaena and leucaena psyllid in Ethiopia, pp. 99102. In Leucaena Psyllid: A Threat to Agroforestry in Africa (Edited by Ciesla, W. M. and Nshubemuki, L.). Proceedings of workshop, 10–24 October 1994, Dar-es-Salaam, United Republic of Tanzania. FAO, Rome.Google Scholar
Brewbaker, J. L. (1987) Leucaena: A multipurpose tree genus for tropical agroforestry, pp. 289323. In Agroforestry—a Decade of Development (Edited by, Steppler, H. A. and Nair, P. K. R.) ICRAF, Nairobi, Kenya.Google Scholar
Dethier, V. G. (1980) Evolution of receptor sensitivity to secondary plant substances with special reference to deterrents. Am. Nat. 115, 4566.Google Scholar
Dethier, V. G. (1982) Mechanisms of host plant recognition. Entomol. Exp. Appl. 31, 4956.Google Scholar
Elder, R. J. and Mayer, D. G. (1990) An improved sampling method for Heteropsylla cubana Crawford (Homoptera: Psyllidae) on Leucaena leucocephala. J. Aust. ent. Soc. 29, 131137.Google Scholar
Escalada, R. G. (1989) Leucaena psyllid trial in the Philippines. Leucaena Res. Rep. 10, 37.Google Scholar
Hollis, D. (1992) Leucaena psyllid, Heteropsylla cubana Crawford newly recorded in Mauritius and Reunion. FAO Plant Prot. Bull. 40, 4950.Google Scholar
Lapis, E. B. and Borden, J. H. (1993) Olfactory discrimination by Heteropsylla cubana (Homoptera: Psyllidae) between susceptible and resistant species of Leucaena (Leguminosae). J. Chem. Ecol. 19, 8390.Google Scholar
Mangoendihardjo, S., Mahrub, E. and Warrow, J. (1989a) Endemic natural enemies of the leucaena psyllid in Indonesia, pp. 159161. In Leucaena Psyllid: Problems and Management (Edited by Napompeth, B. and MackDicken, K. G.). Proceedings of a Workshop, January 16–21, Winrock International/IDRC/NFTA, Bogor, Indonesia.Google Scholar
Mangoendihardjo, S., Wagiman, F. X., Trisyono, Y. A. and Sudjono, M. (1989b) Seasonal abundance of leucaena psyllid populations in Yogykarta, Indonesia, pp. 111113. In Leucaena Psyllid: Problems and Management (Edited by Napompeth, B. and MackDicken, K. G.). Proceedings of a Workshop, January 16–21, Winrock International/IDRC/NFTA, Bogor, Indonesia.Google Scholar
Metcalf, R. L. (1986) Plant volatiles as insect attractants. Crit. Rev. Plant Sci. 5, 251301.Google Scholar
Naik, S., Rajagopal, D. and Munegowda, M. K. (1991) Population dynamics of the subabul psyllid Heteropsylla cubana Crawford (Homoptera: Psyllidae) and its interaction with natural enemies. Leucaena Res. Rep. 12, 4952.Google Scholar
Napompeth, B. (1994) Leucaena psyllid in the Asia Pacific region: Implications for its management in Africa. RAPA-FAO publication 1994/13. Bangkok, Thailand. 27 pp.Google Scholar
Othman, A. B. and Prine, G. M. (1984) Leucaena accessions resistant to jumping plant lice. Leucaena Res. Rep. 5, 8687.Google Scholar
Parvathi, C., Belavadi, V. V. and Thimmaiah, G. (1990) Biology of the leucaena psyllid Heteropsylla cubana Crawford (Homoptera: Psyllidae) in south India. Indian J. For. 13, 154157.Google Scholar
Rauf, A., Hidayat, P., Maryana, N. and Winasa, I. W. (1989) Biology and demography of Heteropsylla cubana Crawford (Homoptera: Psyllidae), pp. 114117. In Leucaena Psyllid: Problems and Management (Edited by Napompeth, B. and MackDicken, K. G.). Proceedings of a Workshop, January 16–21, Winrock International/IDRC/NFTA, Bogor, Indonesia.Google Scholar
Rao, M. R. (1995) Leucaena psyllid in Kenya and experience with chemical control, pp. 136142. In Leucaena Psyllid: A Threat to Agroforestry in Africa (Edited by Ciesla, W. M. and Nshubemuki, L.). Proceedings of a workshop, 10–24 October 1994, Dar-es-Salaam, United Republic of Tanzania. FAO, Rome.Google Scholar
Reynolds, L. and Bimbuzi, S. (1992) Leucaena psyllid arrives in Kenya. Agroforestry Today 4, 2.Google Scholar
Root, R. B. (1973) Organization of plant-arthropod association in simple and diverse habitats: The fauna of collards (Brassicae olevaceae). Ecol. Monogr. 43, 95124.CrossRefGoogle Scholar
Russell, E. P. (1989) Enemies hypothesis: A review of the effect of vegetational diversity on predatory insects and parasitoids. Environ. Entomol. 18, 590599.Google Scholar
Saxena, K. N. (1987) Ovipositional responses of Chilo partellus to certain sorghum cultivars in relation to their resistance or susceptibility to the stem borer, pp. 313318. In Proc. 6th Int. Symp. Insect-Plant Relationships. D. W. Junk Publishers, Dordrecht.Google Scholar
Shakacite, O. (1995) Distribution of leucaena, current status and impact of leucaena psyllid and some management options for Zambia, pp. 107111. In Leucaena Psyllid: A Threat to Agroforestry in Africa (Edited by Ciesla, W. M. and Nshubemuki, L.). Proceedings of workshop, 10–24 October 1994, Dar-es-Salaam, United Republic of Tanzania. FAO, Rome.Google Scholar
Sheehan, W. (1986) Response by specialist and generalist natural enemies to agroecosystem diversification: A selective review. Environ. Entomol. 15, 456461.Google Scholar
Silva Raus da, C. E. and da Trinidade Mário Rombe, R. M. (1995) Preliminary observations of Leucaena development in Mozambique, pp. 5866. In Leucaena Psyllid: A aThreat to Agroforestry in Africa (Edited by Ciesla, W. M. and Nshubemuki, L.). Proceedings of workshop, 10–24 October 1994, Dar-es-Salaam, United Republic of Tanzania. FAO, Rome.Google Scholar
Sombroek, W. G., Braun, H. M. H. and van Der Pouw, B. J. A. (1982) Exploratory Soil Map and Agroclimatic Zone Map of Kenya. Kenya Soil Survey, Nairobi.Google Scholar
Sorensson, C. T. and Brewbaker, J. L. (1984) Newly introduced psyllid in Hawaii injurious to Leucaena. Leucaena Res. Rep. 5, 9193.Google Scholar
Statistical Analysis Systems Institute Inc. (1985) SAS Users Guide. Statistics, Version 5 edn. SAS Institute Inc., Cary, NC.Google Scholar
Sutikno, A. I., Darma, J. and Ternak, H. P. B. P. (1991) Mimosine content in the sap of Leucaena species resistant and susceptible to Heteropsylla cubana Crawford. Toxicol. Environ. Chem. 33, 7983.Google Scholar
Takara, J. M., Dinker, R. J., Nagamine, W. T. and Teramoto, K. K. (1990) Biology and reproductive rate of the leucaena psyllid Heteropsylla cubana Crawford. Proc. Hawaii Entomol. Soc. 30, 2330.Google Scholar
Tingle, F. C., Mitchell, E. R. and Heath, R. R. (1990) Preference of mated Heliothis viriscens and H. subflexa females for host and nonhost volatiles in a flight tunnel. J. Chem. Ecol. 16, 28892898.Google Scholar
Vandermeer, J. H. (1990) Intercropping, pp. 481516. In Agroecology (Edited by Carrol, C. R., Vandermeer, J. H. and Rosset, P. M.). McGraw Hill, New York.Google Scholar
Villacarlos, L. T., Paglinawan, R. V. and Robin, R. P. (1989) Factors affecting leucaena psyllid populations in Leyte, Philippines, pp. 122127. In Leucaena Psyllid: Problems and Management (Edited by Napompeth, B. and MackDicken, K. G.). Proceedings of a Workshop, January 16–21, Winrock International/IDRC/NFTA, Bogor, Indonesia.Google Scholar
Wheeler, R. A. (1988) Leucaena psyllid trial at Waimanalo, Hawaii. Leucaena Res. Rep. 9, 2529.Google Scholar
Wheeler, R. A. and Brewbaker, J. L. (1989) Results from the International Leucaena Psyllid Trial Network. Leucaena Res. Rep. 10, 1115.Google Scholar