Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-15T15:16:02.520Z Has data issue: false hasContentIssue false

1-Octen-3-ol. A potent olfactory stimulant and attractant for tsetse isolated from cattle odours

Published online by Cambridge University Press:  19 September 2011

D. R. Hall
Affiliation:
Overseas Development Administration, Tropical Development and Research Institute, 56/62 Gray's Inn Road, London WC1X 8LU, England
P. S. Beevor
Affiliation:
Overseas Development Administration, Tropical Development and Research Institute, 56/62 Gray's Inn Road, London WC1X 8LU, England
A. Cork
Affiliation:
Overseas Development Administration, Tropical Development and Research Institute, 56/62 Gray's Inn Road, London WC1X 8LU, England
Brenda F. Nesbitt
Affiliation:
Overseas Development Administration, Tropical Development and Research Institute, 56/62 Gray's Inn Road, London WC1X 8LU, England
G. A. Vale
Affiliation:
Tsetse and Trypanosomiasis Control Branch, Department of Veterinary Services, P.O. Box 8283, Causeway, Harare, Zimbabwe
Get access

Abstract

Recording of electroantennographic (EAG) responses from tsetse, Glossina pallidipes and G. morsitans morsitans (Diptera: Glossinidae) has been used to detect olfactory stimulants in volatiles from cattle. The most potent stimulant in cattle odours collected on Porapak resin has been identifiedas 1-octen-3-ol by gas chromatographic retention data and mass spectrometry. The rate of production of 1-octen-3-ol by a normal ox was estimated to be 0.043 mghr−1, and the natural material was shown to be predominantly the (R)-(−)enantiomer. No 1-octen-3-ol was collected under the conditions used in the absence of an ox. EAG dose-response curves to 1-octen-3-ol showed it to be about 106 times more potent than acetone, a known attractant for tsetse, with the maximum response of about 1 mV occurring to approx. 1 ng at source. 1-octen-3-ol caused increased upwind flight by tsetse in a wind tunnel bioassay, and in the field it was attractive to tsetse by itself and also increased the attractiveness of both ox odour and of mixtures ofcarbon dioxide and acetone.

Résumé

Les réponses électroantennographique (EAG) des mouches tsé-tsé, Glossina pallidipes et G. morsitans morsitans (Diptera: Glossinidae), ont été notées afin de découvrir les stimulants olfactifs parmi les composés volatils émanant du bétail. Le stimulant le plus puissant dans l'odeur de bétail, recueillié sur la résine Porapak, a été identifié comme 1-octen-3-ol en utilisant des données de rétention chromatographique en phase gazeuse et spectrométrie de mass. On a estimé le taux de production de 1-octen-3-ol par un boeuf normal à 0,043 mg hr−1 et la matiére naturelle s'est révélée comme composée en majeure partie de l'enantiomère (R)-(−). Dans les conditions utilisées, on n'a recueillié de 1-octen-3-olqu'enpresence d'un boeuf. Les courbes de dosage-réponse EAG pour 1-octen-3-ol l'a révélé à peu près 106 fois plus puissant que l'acétone, un attractant connu pour les mouches tsé-tsé, la réponse maximum d'environ 1 mV étant enregistrée pour environ 1 ng à la source. 1-octen-3-ol a occasionne un accroissement de vol des mouches tsé-tsé contre le vent dans un tunnel aérodynamique. Sur le terrain 1-octen-3-ol s'est révélé attractif tout seul et a augmenté la puissance attractive de l'odeur de boeuf et aussi dés mélanges de bioxyde de carbone et d'acétone.

Type
Research Article
Copyright
Copyright © ICIPE 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blight, M. M., Wadhams, L. J. and Wenham, M. J. (1979) The stereoisomeric composition of the 4-methyl-3-heptanol produced by Scolytus scolytus and the preparation and biological activity of the four synthetic stereoisomers. Insect Biochem. 9, 525533.Google Scholar
Burgess, L. and Wiens, J. E. (1980) Dispensing allyl isothiocyanate as an attractant for trapping crucifer-feeding flea beetles. Can. Ent. 112, 9397.Google Scholar
Bursell, E. (1984) Effects of host odour on the behaviour of tsetse. Insect Sci. Applic. 5, 345349.Google Scholar
Buttery, R. G. and Kamm, J. A. (1980) Volatile components of alfalfa: possible insect host plant attractants. J. agric. FdChem. 28, 978981.Google Scholar
Buttery, R. G., Kamm, J. A. and Ling, L. C. (1982) Volatile components of alfalfa flowers and pods. J. agric. Fd Chem. 30, 739742.CrossRefGoogle Scholar
Dale, J. A., Dull, D. L. and Mosher, H. S. (1969) α-Methoxy-α-trifluoromethyl-phenylacetic acid, a versatile reagent for the determination of enantiomeric composition of alcohols and amines. J. org. Chem. 34, 25432549.Google Scholar
Dijkstra, F. Y. and Wiken, T. O. (1976) Studies on mushroom flavors. I. Organoleptic significance of constituents of the cultivated mushroom, Agaricus bisporus. Z. Lebensmittelunters. Forsch. 160, 255262.Google Scholar
Frankel, E. N., Neff, W. E. and Selke, E. (1981) Analysis of autoxidised fats by gas chromatography–mass spectrometry. VII. Volatile thermal decomposition products of pure hydroperoxides from autoxidised and photosensitised oxidised methyl oleate, linoleate and linolenate. Lipids 16, 279285.CrossRefGoogle Scholar
Grob, K. and Zurcher, F. (1976) Stripping of organic trace substances from water. Equipment andprocedure. J. Chromat. 117, 285294.CrossRefGoogle Scholar
Hargrove, J. W. and Vale, G. A. (1978) The effect of host odour concentration on catches of tsetse flies (Glossinidae) and other Diptera in the field. Bull. ent. Res. 68, 607612.CrossRefGoogle Scholar
Honkanen, E. and Moisio, T. (1963) On the occurrence of oct-l-en-3-ol in clover plants. Actachem. scand. 17, 858.Google Scholar
Levene, P. A. and Walti, A. (1931) Configurational relationship of α-hydroxyheptanoic acid to other α-hydroxy acids. J. biol. Chem. 94, 593598.Google Scholar
Moorhouse, J. E., Yeadon, R., Beevor, P. S. and Nesbitt, B. F. (1969) Method for use in studies of insect chemical communication. Nature, Lond. 223, 11741175.CrossRefGoogle Scholar
Nesbitt, B. F. (1978) A review of work on insect pheromones at the Tropical Products Institute. Trop. Sci. 20, 110.Google Scholar
Nesbitt, B. F., Beevor, P. S., Hall, D. R., Lester, R., Davies, J. C. and Seshu, Reddy K. V. (1979) Components of the sex pheromone of the female spotted stalk borer, Chilo partellus (Swinhoe) (Lepidoptera: Pyralidae): identification and preliminary field trials. J. chem. Ecol. 5, 153163.Google Scholar
Roelofs, W. L. (1977) The scope and limitations of the electroantennogram technique in identifying pheromone components. In Crop Protection Agents: Their Biological Evaluation (Edited by McFarlane, N. R.) pp. 147165. Academic Press, London.Google Scholar
Roelofs, W. and Comeau, A. (1971) Sex pheromone perception: electroantennogram responses of thered-banded leaf roller moth. J. Insect Physiol. 17, 19691982.CrossRefGoogle ScholarPubMed
Schneider, D. (1969) Insect olfaction: deciphering system for chemical messages. Science 163, 10311037.CrossRefGoogle ScholarPubMed
Tumlinson, J. H., Heath, R. R. and Teal, P. E. A. (1982) Analysis of chemical communications systems of lepidoptera. In Insect Pheromone Technology: Chemistry and Applications (Edited by Leonhardt, B. A. and Beroza, M.) pp. 125. ACS Symposium Series 190. American Chemical Society, Washington D.C.Google Scholar
Vale, G. A. (1974a) New field methods for studying the responses of tsetse flies (Diptera, Glossinidae) to hosts. Bull. ent. Res. 64, 199208.CrossRefGoogle Scholar
Vale, G. A. (1974b) The response of tsetse flies (Diptera, Glossinidae) to mobile and stationary baits. Bull. ent. Res. 64, 545588.Google Scholar
Vale, G. A. (1980) Field studies of the responses of tsetse flies (Glossinidae) and other Diptera to carbon dioxide, acetone and other chemicals. Bull. ent. Res. 70, 563570.CrossRefGoogle Scholar
Vale, G. A. (1981) An effect of host diet on the attraction of tsetse flies (Diptera: Glossinidae) to host odour. Bull. ent. Res. 71, 259265.Google Scholar
Vale, G. A. (1982a) The role of the antennae in the availability of tsetse flies (Diptera: Glossinidae) to population sampling techniques. Trans. Zimbabwe Scient. Ass. 61, 3340.Google Scholar
Vale, G. A. (1982b) Prospects for using stationary baits to control and study populations of tsetse flies (Diptera: Glossinidae) in Zimbabwe. In Sterile Insect Technique and Radiation in Insect Control, pp. 191203. International Atomic Energy Agency, Vienna.Google Scholar
Vale, G. A. (1982c) The improvement of traps for tsetse flies (Diptera: Glossinidae). Bull. ent. Res. 72, 95106.Google Scholar
Visser, J. H. and Minks, A. K. (1982) (Eds) Proceedings of the 5th International Symposium on Insect-Plant Relationships. Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands.Google Scholar
Williams, H. J., Silverstein, R. M., Burkholder, W. E. and Khorramshahi, A. (1981) Dominicalure 1and 2: components of aggregation pheromone from male lesser grain borer Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae). J. chem. Ecol. 7, 759780.CrossRefGoogle Scholar
Wurzenberger, M. and Grosch, W. (1982) The enzymatic oxidative breakdown of linoleic acid in mushrooms (Psalliota bispora). Z. Lebensmittelunters. Forsch. 175, 186190.CrossRefGoogle Scholar