Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T04:25:33.818Z Has data issue: false hasContentIssue false

Live Attenuated Vaccine Vectors

Published online by Cambridge University Press:  14 October 2009

John J. Mekalanos
Affiliation:
Harvard Medical School

Abstract

Several different live attenuated vaccine vectors currently are under development. These vaccines are composed of living viruses or bacteria that are innocuous to the host but can replicate in host tissues and induce immune responses. The genes encoding foreign antigens can be inserted into these vectors to produce multivalent vaccines that promise to induce immunity to more than one target disease after the administration of a single dose of vaccine.

Type
Special Section: Vaccines and Public Health: Assessing Technologies and Public Policies
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Aggarwal, A., Kumar, S., Jaffe, R., et al. Oral salmonella: Malaria circumsporozoite recombinants induce specific CD8+ cytotoxic T cells. Journal of Experimental Medicine, 1990, 172, 1083–90.CrossRefGoogle ScholarPubMed
2.Aldovini, A., & Young, R. A.Humoral and cell-mediated immune responses to live recombinant BCG-HIV vaccines. Nature, 1991, 351, 479–82.CrossRefGoogle ScholarPubMed
3.Barletta, R. G., Snapper, B., Cirillo, J. D., et al. Recombinant BCG as a candidate oral vaccine vector. Research in Microbiology, 1990, 141, 931–39.CrossRefGoogle ScholarPubMed
4.Baudry, B., Fasano, A., Ketley, J., & Kaper, K. B.Cloning of a gene (zot) encoding a new toxin produced by Vibrio cholerae. Infection and Immunity, 1992, 60, 428–34.CrossRefGoogle ScholarPubMed
5.Baxby, D., & Paoletti, E.Potential use of non-replicating vectors as recombinant vaccines. Vaccine, 1992, 10, 89.CrossRefGoogle ScholarPubMed
6.Blancou, J., Kieny, M. P., Lathe, R., et al. Oral vaccination of the pox against rabies using a live recombinant vaccinia virus. Nature, 1986, 322, 373–75.CrossRefGoogle Scholar
7.Chatfield, S. N., Charles, I. G., Makoff, A. J., et al. Use of the nirB promoter to direct the stable expression of heterologous antigens in Salmonella oral vaccine strains: Development of a single-dose oral tetanus vaccine. Bio/Technology, 1992, 10, 888–92.Google ScholarPubMed
8.Chatfield, S. N., Fairweather, N., Charles, I., et al. Construction of a genetically defined Salmonella typhi Ty2 aroA, aroC mutant for the engineering of a candidate oral typhoid-tetanus vaccine. Vaccine, 1992, 10, 5360.CrossRefGoogle ScholarPubMed
9.Clemens, J. D., Sack, D. A., Harris, J. R., et al. Field trail of oral-cholera vaccines in Bangladesh: Results from three-year follow-up. Lancet, 1990, 335, 270–73.CrossRefGoogle Scholar
10.Cooney, E. L., Collier, A. C., Greenberg, P. D., et al. Safety of and immunological response to a recombinant vaccinia virus vaccine expressing HIV envelope glycoprotein. Lancet, 1992, 337, 567–72.CrossRefGoogle Scholar
11.Evans, D. J., McKeating, J., Meredith, J. M., et al. An engineered poliovirus chimaera elicits broadly reactive HIV-1 neutralizing antibodies. Nature, 1989, 339, 385–88.CrossRefGoogle ScholarPubMed
12.Fasano, A., Baudry, B., Pumplin, D. W., et al. Vibrio cholerae produces a second entero-toxin, which affects intestinal tight junctions. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 5242–46.CrossRefGoogle Scholar
13.Fenner, F., Henderson, D. A., Arita, I., et al. Smallpox and its eradication. Geneva, Switzerland: World Health Organization, 1988.Google Scholar
14.Fontaine, A., Arondel, J., & Sansonetti, P. J.Construction and evaluation of live attenuated vaccine strains of Shigella flexneri and Shigella dysenteriae 1. Research in Microbiology, 1990, 141, 907–12.CrossRefGoogle ScholarPubMed
15.Formal, S. B., Baron, L. S., Kopecko, D. J., et al. Construction of a potential bivalent vaccine strain: Introduction of Shigella sonnei form I antigen genes into the galE Salmonella typhi Ty21A typhoid vaccine strain. Infection and Immunity, 1981, 34, 746–50.CrossRefGoogle Scholar
16.Forrest, B., LaBrooy, J. T., Attridge, S. R., et al. A candidate live oral typhoid/cholera hybrid vaccine is immunogenic in man. Journal of Infectious Diseases, 1989, 159, 145–46.CrossRefGoogle Scholar
17.Goebel, S. J., Johnson, G. P., Perkus, M. E., et al. The complete DNA sequence of vaccinia virus. Virology, 1990, 179, 247–66.CrossRefGoogle ScholarPubMed
18.Graham, F. L., & Prevec, L. Adenovirus-based expression vectors and recombinant vaccines. In Ellis, R. W. (ed.), Vaccines: New approaches to immunological problems. Stoneham, MA: Butterworth-Heinemann, 1992, 363–90.CrossRefGoogle Scholar
19.Hassan, J. O., & Curtiss, R.Control of colonization by virulent Salmonella typhimurium by oral immunization of chickens with avirulent Dcya Dcrp S. typhimurium. Research in Microbiology, 1990, 141, 839–50.CrossRefGoogle Scholar
20.Herrington, D. A., Hall, R. H., Losonsky, G., et al. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. Journal of Experimental Medicine, 1988, 168, 1487–92.CrossRefGoogle ScholarPubMed
21.Hone, D. M., Harris, A. M., Chatfield, S., et al. Constriction of genetically defined double aro mutants of Salmonella typhi. Vaccine, 1991, 9, 810–16.CrossRefGoogle Scholar
22.Hormaeche, C. E., Joysey, H. S., Desilva, L., et al. Immunity induced by live attenuated Salmonella vaccines. Research in Microbiology, 1990, 141, 757–64.CrossRefGoogle ScholarPubMed
23.Hu, S. L., Fultz, P. N., McClure, H. M., etal. Effect of immunization with a vaccinia-HIV env recombinant on HIV infection of chimpanzees. Nature, 1987, 328, 721–23.CrossRefGoogle ScholarPubMed
24.Hummel, M., Arsenakis, M., Marchini, A., et al. Herpes simplex virus expressing Epstein-Barr virus nuclear antigen 1. Virology, 1986, 148, 337–48.CrossRefGoogle ScholarPubMed
25.Kaper, J. B., Lockman, H., Baldini, M., et al. Recombinant nontoxinogenic Vibrio chol-erae strains as attenuated cholera vaccine candidates. Nature, 1984, 308, 655–58.CrossRefGoogle ScholarPubMed
26.Kotloff, K. L., Herrington, D. A., Hale, T. L., et al. Safety, immunogenicity, and efficacy in monkeys and humans to invasive Escherichia coli K-12 hybrid vaccine candidates expressing Shigellajlexneri 2a. somatic antigen. Infection and Immunity, 1992, 60, 2218–24.CrossRefGoogle ScholarPubMed
27.Lee, M. S., Roos, J. M., McGuigan, L. C., et al. Molecular attenuation of vaccinia virus: Mutant generation and animal characterization. Journal of Virology, 1992, 66, 2617–30.CrossRefGoogle ScholarPubMed
28.Levine, M. M., Black, R. E., Clements, M. L., et al. Evaluation in man of attenuated Vibrio cholerae El Tor Owaga strain Texas Star-SR as a live oral vaccine. Infection and Immunity, 1984, 43, 515–22.CrossRefGoogle Scholar
29.Levine, M. M., Hone, D., Tacket, C., et al. Clinical and field trials with attenuated Salmonella typhias live oral vaccines and as “carrier” vaccines. Research in Microbiology, 1990, 141, 807–16.CrossRefGoogle ScholarPubMed
30.Levine, M. M., Kaper, J. B., Herrington, D., et al. Volunteer studies of deletion mutants of Vibrio cholerae 01 prepared by recombinant techniques. Infection and Immunity, 1988, 56, 161–67.CrossRefGoogle ScholarPubMed
31.Levine, M. M., Kaper, J. B., Herrington, D., et al. Safety, immunogenicity, and efficacy of recombinant live oral cholera vaccines, CVD 103 and CVD 103-HgR. Lancet, 1988, ii, 467–70.CrossRefGoogle Scholar
32.Levrero, M., Barban, V., Manteca, S., et al. Defective and nondefectiveadenovirus vectors for expressing foreign genes in vitro and in vivo. Gene, 1991, 101, 195202.CrossRefGoogle ScholarPubMed
33.Li, A., Tibor, P., Forsum, U., etal. Safety and immunogenicity of the live oral auxotrophic Shigella flexneri SFK24 in volunteers. Vaccine, 1992, 10, 395404.CrossRefGoogle ScholarPubMed
34.Lubeck, M. D., Davis, A. R., Chengalvala, M., et al. Immunogenicity and efficacy testing in chimpanzees of an oral hepatitis B vaccine based on live recombinant adenovirus. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 6763–67.CrossRefGoogle ScholarPubMed
35.Mackett, M., Smith, G. L., & Moss, B.Vaccinia virus: A selectable eukaryotic cloning and expression vector. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 7415–19.CrossRefGoogle ScholarPubMed
36.McDermott, M. R., Graham, F. L., Hanke, T., et al. Protection of mice against lethal challenge with herpes simplex virus by vaccination with an adenovirus vector expressing HSV glycoprotein B. Virology, 1989, 169, 244–47.CrossRefGoogle ScholarPubMed
37.Meignier, B., Longnecker, R., & Roizman, B.In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020: Construction and evaluation in rodents. Journal of Infectious Diseases, 1988, 158, 602–14.CrossRefGoogle ScholarPubMed
38.Mekalanos, J. J.Duplication and amplification of toxin gene in Vibrio cholerae. Cell, 1983, 35, 253–63.CrossRefGoogle ScholarPubMed
39.Mekalanos, J. J., Swartz, D. J., Pearson, G. D. N., et al. Cholera toxin genes: Nucleotide sequence, deletion analysis and vaccine development. Nature, 1983, 306, 551–57.CrossRefGoogle ScholarPubMed
40.Michetti, P., Mahan, M. J., Slauch, J. M., et al. Monoclonal secretory immunoglobulin A protects mice against oral challenge with the invasive pathogen Salmonella typhimurium. Infection and Immunity, 1992, 60, 1786–92.CrossRefGoogle ScholarPubMed
41.Miller, S. I., & Mekalanos, J. J.Constitutive expression of the PhoP regulon attenuates Salmonella virulence and survival within macrophages. Journal of Bacteriology, 1990, 172, 2485–90.CrossRefGoogle Scholar
42.Miller, S. I., Mekalanos, J. J., & Pulkkinen, W. S.Salmonella vaccines with mutations in the phoP virulence regulon. Research in Microbiology, 1990, 78, 817–21.Google ScholarPubMed
43.Moss, B. Vaccinia virus vectors. In Ellis, R. W. (ed.), Vaccines: New approaches to immu-nological problems. Stoneham, MA: Butterworth-Heinemann, 1992, 345–62.Google Scholar
44.Nakayama, K., Kelly, S. M., & Curtiss, R.Construction of an Asd+ expression-cloning vector: Stable maintenance and high level expression of cloned genes in a Salmonella vaccine strain. Bio/Technology. 1988, 6, 693.Google Scholar
45.O'Callaghan, D., Charbit, A., Martineau, P., et al. Immunogenicity of foreign peptide epitopes expressed in bacterial envelope proteins. Research in Microbiology, 1990, 141, 963–69.CrossRefGoogle ScholarPubMed
46.Owen, R. L.Sequential uptake of horseradish peroxidase by lymphoid follicle epithelium of Peyer's patches in the normal unobstructed mouse intestine: An ultrastructural study. Gastroenterology, 1977, 72, 440–51.CrossRefGoogle ScholarPubMed
47.Panicali, D., & Paoletti, E.Construction of poxviruses as cloning vectors: Insertion of the thymidine kinase gene from herpes simplex virus into DNA of infectious vaccinia virus. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 4927–31.CrossRefGoogle ScholarPubMed
48.Paoletti, E., Poxvirus recombinant vaccines. Annals of the New York Academy of Sciences, 1990, 590, 309–25.CrossRefGoogle ScholarPubMed
49.Pearson, G. P. N., Woods, A., Chaing, S. L., et al. CTX genetic element encodes a site-specific recombination system and an intestinal colonization factor. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 3750–54.CrossRefGoogle Scholar
50.Prevec, L., Christie, B. S., Lauri, K. E., et al. Immune response to HIV-1 gag antigens induced by recombinant adenovirus vectors in mice and Rhesus macaque monkeys. Journal of Acquired Immune Deficiency Syndrome, 1991, 4, 568–76.Google ScholarPubMed
51.Prevec, L., Schneider, M., Rosenthal, K. L., et al. Use of human adenovirus-based vectors for antigen expression in animals. Journal of General Virology, 1989, 70, 429–34.CrossRefGoogle ScholarPubMed
52.Pye, D., Edwards, S. J., Anders, R. F., et al. Failure of recombinant vaccinia viruses expressing Plasmodium falciparum antigens to protect Saimiri monkeys against malaria. Infection and Immunity, 1991, 59, 2403–11.CrossRefGoogle ScholarPubMed
53.Racaniello, V. R. Poliovirus vaccines. In Davies, J. E. (ed.), Vaccines: New approaches to immunological problems. Stoneham, MA: Butterworth-Heinemann, 1992, 345–62.Google Scholar
54.Roberts, A., Pearson, G. D. N., & Mekalarios, J. J. Cholera vaccine strains derived from a 1991 Peruvian isolate of Vibrio cholerae and other El Tor strains. In Proceedings of the 28th Joint Conference on Cholera and Related Diarrheal Diseases. Bethesda, MD: Public Health Service, National Institutes of Health Press, 1992.Google Scholar
55.Rosen-Wolff, A., Raab, K., Zoller, L., et al. Expression of human immunodeficiency virus type 1 gag gene using genetically engineered herpes simples virus type 1 recombinants. Virus Genes, 1990, 4, 325–37.CrossRefGoogle Scholar
56.Rupprecht, C. E., Wiktor, T. J., Johnston, D. H., et al. Oral immunization and protection of raccoons (Procyon lotor) with a vaccinia-rabies glycoprotein recombinant virus vaccine. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 7947–50.CrossRefGoogle ScholarPubMed
57.Sadoff, J. C., Ballou, W. R., Baron, L. S., et al. Oral Salmonella typhimurium vaccine expressing circumsporozoite protein protects against malaria. Science, 1988, 240, 336–38.CrossRefGoogle ScholarPubMed
58.Schodel, F., Enders, G., Jung, M., et al. Recognition of a hepatitis B virus nucleocapsid T-cell epitope expressed as a fusion protein with the subunit B of Escherichia coli heat labile enterotoxin in attenuated salmonellae. Vaccine, 1990, 8, 569–72.CrossRefGoogle ScholarPubMed
59.Shih, M., Arsenakis, F., Toillais, P., et al. Expression of hepatitis B virus S gene by herpes simplex virus type 1 vectors carrying a- and b-regulated gene chimeras. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 5867–70.CrossRefGoogle Scholar
60.Small, P. A., Smith, G. L., & Moss, B. Intranasal vaccination with a recombinant vaccinia virus containing influenza hemagglutinin prevents both influenza virus pneumonia and nasal infection: Intradermal vaccination prevents only viral pneumonia. In Lerner, R. A., Chanock, R. M., & Brown, F. (eds.), Vaccines 85. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1985, 175–76.Google Scholar
61.Smith, G. L., & Moss, B.Infectious poxvirus vectors have capacity for at least 25, 000 base pairs of foreign DNA. Gene, 1983, 25, 2128.CrossRefGoogle Scholar
62.Tacket, C. O., Clemens, J., & Kaper, J. B. Cholera vaccines. In Ellis, R. W. (ed.), Vaccines: New approaches to immunological problems. Boston, MA: Butterworth-Heinemann, 1992, 5368.CrossRefGoogle Scholar
63.Taylor, J., Weinbert, R., Tartaglia, J., et al. Nonreplicating viral vectors as potential vaccines: Recombinant canarypox virus expressing measles virus fusion (F) and hemagglu-tinin (HA) glycoproteins. Virology, 1992, 187, 321–28.CrossRefGoogle Scholar
64.Trucksis, M., Galen, J. E., Michalski, J., et al. Accessory cholera enterotoxin (Ace), the third toxin of a Vibrio cholerae virulence cassette. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 5267–71.CrossRefGoogle ScholarPubMed
65.Whitley, R. J., & Meignier, B. Herpes simplex vaccines. In Davies, J. E. (ed.), Vaccines: New approaches to immunological problems. Stoneham, MA: Butterworth-Heinemann, 1992, 223–46.Google Scholar