Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T04:41:19.587Z Has data issue: false hasContentIssue false

High-Frequency Oscillatory Ventilation

Published online by Cambridge University Press:  10 March 2009

W. Alan Hodson
Affiliation:
University of Washington, Seattle

Extract

The improved survival rate of premature infants with respiratory failure is attributable to advances in mechanical ventilation, although an adverse consequence has been an increased incidence of bronchopulmonary dysplasia (BPD) (1;32). Positive pressure ventilation with its attendant “barotrauma” is suspected in the causation of BPD. While many attempts to alter respirator variables, such as pressure and time components, have produced optimal patterns for gas exchange, evidence is lacking to support any one pattern that minimizes the incidence of chronic lung injury. The high incidence of BPD has promoted a search for alternative methods of ventilation that might reduce lung injury through a reduction in peak pressure applied to the lung. Additional motivation has come from the need for oxygenation when mechanical ventilation has failed or pulmonary interstitial emphysema has developed. Less compelling reasons have come from the desire to avoid high swings in thoracic pressure that might adversely affect cardiac output, venous return, and cerebral blood flow.

Type
Neonatal Disorders of Respiration
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bancalari, E., & Gerhart, T.Bronchopulmonary dysplasia. Pediatric Clinics of North America, 1986, 33, 124.CrossRefGoogle ScholarPubMed
2.Bancalari, A., Gerhardt, T., Bancalari, E., Suguihara, C., Hehre, D., Reifenberg, L., & Goldberg, R.Gas trapping with high frequency ventilation: jet versus oscillatory ventilation. Journal of Pediatrics, 1987, 110, 617.CrossRefGoogle ScholarPubMed
3.Bancalari, E., & Goldberg, K. N.High-frequency ventilation in the neonate. Clinics in Perinatology, 1987, 14, 581–95.CrossRefGoogle ScholarPubMed
4.Bland, R. D., Kim, M. H., Light, M. J., & Wodson, J. L.High frequency mechanical ventilation in severe hyaline membrane disease. Critical Care Medicine, 1980, 8, 275–80.CrossRefGoogle ScholarPubMed
5.Bohn, D. J., Miyasaka, K., & Marchak, B. E.Ventilation by high frequency oscillation. Journal of Applied Physiology, 1980, 48, 710–16.CrossRefGoogle ScholarPubMed
6.Boros, S. J., Mammel, M. C., Lewallen, P. K., Coleman, J. M., Gordon, M. J., & Ophoven, J. P.Necrotizing tracheobronchitis: A complication of high-frequency ventilation. Journal of Pediatrics, 1986, 109, 95.CrossRefGoogle ScholarPubMed
7.Boros, S. J., & Campbell, K.A comparison of the effects of high frequency-low tidal volume and low frequency-high tidal volume mechanical ventilation. Journal of Pediatrics, 1980, 97, 108–12.CrossRefGoogle ScholarPubMed
8.Boros, S. J., Mammel, M. C., Coleman, J. M., Lewallen, P. K., Gordon, M. J., Bing, D. R., & Ophoven, J. P.Neonatal high frequency jet ventilation: four years experience. Pediatrics, 1985, 75, 657–63.CrossRefGoogle ScholarPubMed
9.Boynton, B. R., Mannino, F. L., Davis, R. F., Kopotic, R. J., & Friederichsen, G.Combined high frequency oscillatory ventilation and intermittent mandatory ventilation in critically ill neonates. Journal of Pediatrics, 1984, 105, 297302.CrossRefGoogle ScholarPubMed
10.Bryan, A. C., & Slutsky, A. S.Lung volume during high-frequency oscillation. American Review of Respiratory Disease, 1986, 133, 928.Google ScholarPubMed
11.Butler, W. J., Bohn, D. J., Bryan, A. C., & Froese, A. B.Ventilation by high frequency oscillation in humans. Anesthesia and Analgesia, 1980, 59, 577.CrossRefGoogle ScholarPubMed
12.Carlo, W. A., Chatburn, R. L., & Martin, R. J.Randomized trial of high-frequency jet ventilation versus conventional ventilation in respiratory distress syndrome. Journal of Pediatrics, 1987, 110, 275–82.CrossRefGoogle ScholarPubMed
13.Carlo, W. A., Chatburn, R. L., & Martin, R. J.Decrease in airway pressure during high-frequency jet ventilation in infants with respiratory distress syndrome. Journal of Pediatrics, 1987, 110, 275–82.CrossRefGoogle Scholar
14.Chang, H. K., & Harf, A.High-frequency ventilation: A review. Respiration Physiology, 1984, 57, 135–52.CrossRefGoogle ScholarPubMed
15.Chang, H. K.Mechanisms of gas transport during ventilation by high frequency oscillation. Journal of Applied Physiology, 1984, 56, 533.CrossRefGoogle ScholarPubMed
16.DeLemos, R. A., Coalson, J. J., Gerstmann, D. R., Null, D. M. Jr., Ackerman, N. B., Escobedo, M. B., Robotham, J. L., & Kuehl, T. J.Ventilatory management of infant baboons with hyaline membrane disease: The use of high frequency ventilation. Pediatric Research, 1987, 21, 594602.CrossRefGoogle ScholarPubMed
17.Dorken, H. L., Stark, A. K., Werthammer, J. W., Strieder, D. J., Fredberg, J. J., & Frantz, I. D. 3d. Respiratory system impedance from 4 to 40 Hz in paralyzed intubated infants. Journal of Clinical Investigation, 1983, 72, 903–10.CrossRefGoogle Scholar
18.Frantz, I. D., Stark, A. R., Davis, J. M., Davies, P., & Kitzmiller, T. J.High frequency ventilation does not affect pulmonary surfactant, liquid or morphologic features in normal cats. American Review of Respiratory Disease, 1982, 126, 909.Google ScholarPubMed
19.Frantz, I. D., & Close, R. H.Alveolar pressure changes during high frequency ventilation in rabbits. Pediatric Research, 1985, 19, 162.CrossRefGoogle Scholar
20.Franz, I. D., Westhammer, J., & Stark, A. R.High frequency ventilation in premature infants with lung disease: adequate gas exchange at low tracheal pressures. Pediatrics, 1983, 71, 483–88.CrossRefGoogle Scholar
21.Fredberg, J. J., Glass, G. M., Boynton, B. R., & Frantz, I. D.Factors influencing mechanical performance of neonatal high-frequency ventilation. Journal of Applied Physiology, 1987, 62, 2485–90.CrossRefGoogle Scholar
22.Fredberg, J. J.Augmented diffusion in the airways can support pulmonary gas exchange. Journal of Applied Physiology, 1980, 49, 232–38.CrossRefGoogle ScholarPubMed
23.Fredberg, J. J., Keefe, D. H., Glass, G. M., Castile, R. G., & Frantz, I. D. III.Alveolar pressure nonhomogeneity during small-amplitude high-frequency oscillation. Journal of Applied Physiology, 1984, 57, 788800.CrossRefGoogle ScholarPubMed
24.Froese, A. B., & Bryan, A. C.High-frequency ventilation. State of art. American Review of Respiratory Disease, 1987, 135, 1363–74.CrossRefGoogle Scholar
25.Gallagher, T. J., Klain, M. M., & Carlon, G. C.Present status of high frequency ventilation. Critical Care Medicine, 1982, 10, 613–17.CrossRefGoogle ScholarPubMed
26.Hamilton, P. P., Onayemi, A., Smyth, J. A., Gillan, J. E., Cutz, E., Froese, A. B., & Bryan, A. C.Comparison of conventional and high-frequency ventilation: Oxygenation and lung pathology. Journal of Applied Physiology, 1983, 55, 131–38.CrossRefGoogle ScholarPubMed
27.James, L. S., Hodson, W. A., et al. High frequency ventilation for immature infants. Report of a conference. March 2–4, 1982. Pediatrics, 1983, 71, 280–87.Google Scholar
28.Jonzon, A., Oberg, P. A., Sedin, G., & Sjostrand, U.High frequency low tidal volume positive pressure ventilation. Acta Physiologica Scandinavica, 1970, 80, 21A.CrossRefGoogle ScholarPubMed
29.Lunkenheimer, P. P., Rafflenbeul, W., Keller, H., Dickhut, H. H., & Fuhrmann, C.Application of transtracheal pressure oscillations as a modification of “diffusion respiration.” British Journal of Anaesthesiologica, 1972, 44, 627–28.CrossRefGoogle Scholar
30.Marchak, B. E., Thompson, W. K., Duffty, P., Miyaki, T., Bryan, M. H., Bryan, A. C., & Froese, A. B.Treatment of RDS by high frequency oscillatory ventilation: a preliminary report. Journal of Pediatrics, 1981, 99, 287–92.CrossRefGoogle ScholarPubMed
31.McEvoy, R. D., Davies, N. J. H., Hedenstierna, G., Hartman, M. T., Spragg, R. G., & Wagner, P. D.Lung mucociliary transport during high frequency ventilation. American Review of Respiratory Disease, 1982, 26, 452–56.Google Scholar
32.O'Brodovich, H. M., & Mellins, R. B.Bronchopulmonary dysplasia—unresolved neonatal acute lung injury. American Review of Respiratory Disease, 1985, 132, 694709.Google ScholarPubMed
33.Pagani, G., Rezzonico, R., & Marini, A.Trials of high-frequency jet ventilation in premature infants with severe respiratory disease. Acta Pediatrica Scandinavica, 1985, 74, 681–86.CrossRefGoogle ScholarPubMed
34.Peslim, R., & Fredberg, J. J. Oscillation mechanics of respiratory system. In Fishman, A. P. (ed.), Handbook of physiology, sec. 3: vol. III. Bethesda, MD: American Physiological Society, 1986, 145–77.Google Scholar
35.Pokora, T., Bing, D., Mammel, M., & Boros, S.Neonatal high-frequency jet ventilation. Pediatrics, 1983, 72, 2732.CrossRefGoogle ScholarPubMed
36.Raj, J. U., Goldberg, R. B., & Bland, R. D.Vibratory ventilation decreases filtration of fluid in the lungs of newborn lambs. Circulation Research, 1983, 53, 456–64.CrossRefGoogle ScholarPubMed
37. Report of Workshop on high frequency ventilation. U.S. Dept. of Health and Human Services, Public Health Service, National Institutes of Health, 12 5–7, 1982.Google Scholar
38.Rossing, T. H., Slutsky, A. S., Lehr, J., Drinker, P. A., Kamm, R., & Drazen, J. M.Tidal volume and frequency dependence of carbon dioxide elimination by high-frequency ventilation. New England Journal of Medicine, 1981, 305, 1375–79.CrossRefGoogle ScholarPubMed
39.Sjostrand, U.Review of the physiological rationale for and development of high-frequency positive-pressure ventilation. HFPPV Acta Anaesthesiologica Scandinavica, 1977, 64(Suppl.), 727.CrossRefGoogle ScholarPubMed
40.Solimano, A., Bryan, C., Jobe, A., Ikegami, M. J., & Jacobs, H.Effects of high frequency and conventional ventilation on the premature lamb lung. Journal of Applied Physiology, 1985, 59, 1571–77.CrossRefGoogle ScholarPubMed
41.Trindade, O., Goldberg, R. N., Bancalari, E., Dickstein, P., Ellison, J., & Gerhardt, T.Conventional versus high-frequency ventilation in a piglet model of meconium aspiration: comparison of pulmonary and hemodynamic effects. The Journal of Pediatrics, 1985, 107, 115.CrossRefGoogle Scholar
42.Truog, W. E., Standaert, T. A., Murphy, J. H., Woodrum, D. E., & Hodson, W. A.Effect of prolonged high-frequency oscillatory ventilation in premature primates with experimental hyaline membrane disease. American Review of Respiratory Disease, 1984, 130, 7680.Google ScholarPubMed
43.Thiog, W. E., Standaert, T. A., Murphy, J. H., Palmer, S., Woodrum, D. E., & Hodson, W. A.Effect of high frequency oscillation on gas exchange and pulmonary phospholipids in experimental hyaline membrane disease. American Review of Respiratory Disease, 1983, 127, 585–89.Google Scholar
44.Truog, W. E., & Standaert, T. A.Effects of high-frequency ventilation on gas exchange and pulmonary vascular resistance in lambs. Journal of Applied Physiology, 1985, 59, 1104.CrossRefGoogle ScholarPubMed
45.Truog, W. E.High frequency ventilation in neonatal respiratory disorders. Seminars in Respiratory Medicine, 1984, 6, 127–33.CrossRefGoogle Scholar
46.Wright, K., Lyrene, R. K., Truog, W. E., Standaert, T. A., Murphy, J., & Woodrum, D. E.Ventilation by high-frequency oscillation in rabbits with oleic acid lung disease. Journal of Applied Physiology, 1980, 50, 1056–60.CrossRefGoogle Scholar