Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T04:55:58.680Z Has data issue: false hasContentIssue false

Control of Blood Pressure and the Distribution of Blood Flow

Published online by Cambridge University Press:  10 March 2009

Hans T. Versmold
Affiliation:
University of Munich

Extract

Systemic blood pressure (BP) is the product of cardiac output and total peripheral resistance. Cardiac output is controlled by the heart rate, myocardial contractility, preload, and afterload. Vascular resistance (vascular hindrance × viscosity) is under local autoregulation and general neurohumoral control through sympathetic adrenergic innervation and circulating catecholamines. Sympathetic innovation predominates in organs receivingflowin excess of their metabolic demands (skin, splanchnic organs, kidney), while innervation is poor and autoregulation predominates in the brain and heart. The distribution of blood flow depends on the relative resistances of the organ circulations. During stress (hypoxia, low cardiac output), a raise in adrenergic tone and in circulating catecholamines leads to preferential vasoconstriction in highly innervated organs, so that blood flow is directed to the brain and heart. Catecholamines also control the levels of the vasoconstrictors renin, angiotensin II, and vasopressin. These general principles also apply to the neonate.

Type
Neonatal Disorders of Circulation
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Barr, P. A., Bailey, P. E., Sumners, J., & Cassady, G.Relation between arterial blood pressure and blood volume and effect of infused albumin in sick preterm infants. Pediatrics, 1977, 60, 282–89.CrossRefGoogle ScholarPubMed
2.Baylen, B. G., Ogata, H., Ikegami, M., Jacobs, H., & Jobe, A.Left ventricular performance and contractility before and after volume infusion: A comparative study of preterm and full-term newborn lambs. Circulation, 1986, 73, 1042–49.CrossRefGoogle ScholarPubMed
3.Brown, E. G., Krouskop, R. W., Donnell, F. E., & Sweet, A. Y.Blood volume and blood pressure in infants with respiratory distress. Journal of Pediatrics, 1975, 87, 1133–38.Google Scholar
4.Brubakk, A. M., Oh, W., & Stonestreet, B.Prolonged hypercarbia in the awake newborn piglet: effect on brain blood flow and cardiac output. Pediatric Research, 1987, 21, 2933.CrossRefGoogle ScholarPubMed
5.Bucci, G., Scalamandré, A., Savignoni, P. G., Mendicini, M., Picece-Bucci, S., & Piccinato, L.The systemic systolic blood pressure of newborns with low weight. Acta Paediatrica Scandinavica, 1972, 229 (suppl.), 522.Google Scholar
6.Cartwright, D., Gregory, G. A., Lou, H., & Heyman, M. A.The effect of hypocarbia on the cardiovascular system of puppies. Pediatric Research, 1984, 18, 685–90.CrossRefGoogle ScholarPubMed
7.Davidson, D.Circulating vasoactive substances and hemodynamic adjustments at birth in lambs. Journal of Applied Physiology, 1987, 63, 676.CrossRefGoogle ScholarPubMed
8.Driscoll, D. J., Gillette, P. C., Lewis, R. M., Hartley, C. J., & Schwartz, A.Comparative hemodynamic effects of isoproterenol, dopamine, and dobutamine in the newborn dog. Pediatric Research, 1979, 13, 1006–09.CrossRefGoogle ScholarPubMed
9.Ekblad, H.Postnatal changes in colloid osmotic pressure in premature infants: In healthy infants, in infants with respiratory distress syndrome, and in infants born to mothers with premature rupture of membranes. Gynecological Obstetrical Investigation, 1987, 24, 95100.CrossRefGoogle ScholarPubMed
10.Fahey, J. T., & Lister, G.Postnatal changes in critical cardiac output and oxygen transport in conscious lambs. American Journal of Physiology, 1987, 253, H100.Google ScholarPubMed
11.Fujimura, M., Salisbury, D. M., Robinson, R. O., Howat, P., Emerson, P. M., Keeling, J. W., & Tizard, J. P. M.Clinical events relating to intraventricular haemorrhage in the newborn. Archives of Diseases in Childhood, 1979, 54, 409–14.CrossRefGoogle ScholarPubMed
12.Gregory, G. A., Lister, G., & Heymann, M. A.The effects of tolazoline on the distribution of cardiac output in normoxemic and hypoxemic lambs. Pediatric Research, 1984, 18, 896900.Google Scholar
13.Holland, W. W., & Young, M.Neonatal blood pressure in relation to maturity, mode of delivery and condition at birth. British Medical Journal, 1956, 2, 1311.CrossRefGoogle ScholarPubMed
14.Ingelfinger, J. R., Powers, L., & Epstein, M. F.Blood pressure norms in low-birth-weight infants: Birth through 4 weeks. Pediatric Research, 1983, 17, 319A.Google Scholar
15.Kimble, K. J., Darnall, R. A., Yelderman, M., Ariagno, R. L., & Ream, A. K.An automated oscillometric technique for estimating mean arterial blood pressure in critically ill newborns. Anesthesiology, 1981, 54, 423–25.CrossRefGoogle ScholarPubMed
16.Klopfenstein, H. S., & Rudolph, A. M.Postnatal changes in the circulation and responses to volume loading in sheep. Circulation Research, 1978, 42, 839.Google Scholar
17.Korvenranta, H., Kero, P., & Valimaki, I.Cardiovascular monitoring in infants with Respiratory Distress Syndrome. Biology of the Neonate, 1983, 44, 138–45.CrossRefGoogle ScholarPubMed
18.Linderkamp, O., Bauer, K., & Versmold, H. Unpublished.Google Scholar
19.Linderkamp, O., Strohhacker, I., Versmold, H. T., Klose, H., Riegel, K. P., & Betke, K.Peripheral circulation in the newborn: Interaction of peripheral blood flow, blood pressure, blood volume and blood viscosity. European Journal of Pediatrics, 1978, 129, 73.Google Scholar
20.Linderkamp, O.Placental transfusion: Determinants and effects. Clinics in Perinatology, 1982, 9, 559.Google Scholar
21.Linderkamp, O., Holthausen, H., Seifert, J., Butenandt, I., & Riegel, K. P.Accuracy of blood volume estimations in critically ill children using 125 J-labelled albumin and 51Crlabelled red cells. European Journal of Pediatrics, 1977, 125, 143.Google Scholar
22.Lister, G., Moreau, G., Moss, M., & Talner, N. S.Effects of alterations of oxygen transport on the neonate. Seminars in Perinatology, 1984, 8, 192.Google Scholar
23.Lorenz, J. M., Kleinman, L. I., Kotagal, U. R., & Reller, M. D.Water balance in very low birth weight infants: relation to water and sodium intake and effect on outcome. Journal of Pediatrics, 1982, 101, 423–32.Google Scholar
24.Maayan, C., Eyal, F., Mandelberg, A., Sapoznikov, D., & Lewis, B. S.Effect of mechanical ventilation and volume loading on left ventricular performance in premature infants with respiratory distress syndrome. Critical Care Medicine, 1986, 14, 858–60.Google Scholar
25.Miall-Allen, V. M., de Vries, L. S., & Whitelaw, A. G.Mean arterial blood pressure and neonatal cerebral lesions. Archives of Diseases in Childhood, 1987, 62, 1068–69.CrossRefGoogle ScholarPubMed
26.Miller, F., Reed, J., & Cabal, L.Cardiovascular changes during the first hour of life in infants of pre-eclamptic and normal pregnancies. Critical Care Medicine, 1983, 11, 532–35.Google Scholar
27.Moss, M., Moreau, G., & Lister, G.Oxygen transport and metabolism in the conscious lamb: The effects of hypoxemia, Pediatric Research, 1987, 22, 177–83.CrossRefGoogle ScholarPubMed
28.O'Laughlin, M. P., Fisher, D. J., Dreyer, W. J., & O'Brian Smith, E.Augmentation of cardiac output with intravenous catecholamines in unanesthetized hypoxemic newborn lambs. Pediatric Research, 1987, 22, 667–74.Google Scholar
29.Padbury, J., Agata, Y., Ludlow, J., Ikegami, M., Baylen, B. & Humme, J.Effect of fetal adrenalectomy on catecholamine release and physiologic adaptation at birth in sheep. Journal of Clinical Investigation, 1987, 80, 10961103.Google Scholar
30.Perlman, J. M., Goodman, S., Kreusser, K. L., et al. Reduction in intraventricular hemorrhage by elimination of fluctuating cerebral blood flow velocity in preterm infants with respiratory distress syndrome. New England Journal of Medicine, 1985, 312, 1353–57.Google Scholar
31.Romero, T. E., & Friedman, W. F.Limited left ventricular response to volume overload in the neonatal period: A comparative study with the adult animal. Pediatric Research, 1979, 13, 910–15.Google Scholar
32.Rose, J. C., Block, S. M., Flowe, K., Morris, M., South, S., Sundberg, D. K., & Zimmerman, C.Responses to converting-enzyme inhibition and hemorrhage in newborn lambs and adult sheep. American Journal of Physiology, 1987, 252, R306.Google ScholarPubMed
33.Sidi, D., Kuipers, J. R. G., Teitel, D., Heymann, M. A., & Rudolph, A. M.Developmental changes in oxygenation and circulatory response to hypoxemia in lambs. American Journal of Physiology, 1983, 245, H674.Google ScholarPubMed
34.Tan, K. L.Blood pressure in very low birth weight infants in the first 70 days of life. Journal of Pediatrics, 1988, 112, 266–70.Google Scholar
35.Teitel, D., Sidi, D., Chin, T., Brett, C., Heyman, M. A., & Rudolph, A. M.Developmental changes in myocardial contractile reserve in the lamb. Pediatric Research, 1985, 19, 948.Google Scholar
36.Versmold, H. T., Kitterman, J. A., Phibbs, R. H., Gregory, G. A, & Tooley, W. H.Aortic blood pressure during the first 12 hours of life in infants with birth weight 610 to 4,220 grams. Pediatrics, 1981, 67, 607–13.Google Scholar
37.Versmold, H. T., Arleth, S., Leifels-Fischer, B., & Linderkamp, O.Blood volume of pretermneonates during fluid restriction. Pediatric Research, 1986, 20, 1036A.Google Scholar
38.Woods, J. R. Jr., Dandavino, A., Murayama, K., Brinkmann, C. R. Ill, & Assali, N. S.Autonomic control of cardiovascular functions during neonatal development and in adult sheep. Circulation Research, 1977, 40, 401.Google Scholar