Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T05:29:47.840Z Has data issue: false hasContentIssue false

The Clinical Use of Nuclear Magnetic Resonance Spectroscopy for Studying Human Muscle Metabolism

Published online by Cambridge University Press:  10 March 2009

E. B. Cady
Affiliation:
Department of Medicine, Rayne InstituteUniversity College London School of Medicine
R. D. Griffiths
Affiliation:
Department of Medicine, Rayne InstituteUniversity College London School of Medicine
R. H. T. Edwards
Affiliation:
Department of Medicine, Rayne InstituteUniversity College London School of Medicine

Extract

Nuclear magnetic resonance (NMR) imaging has recently become an accepted technique in the medical practitioner's armory (38). NMR spectroscopy (44) is a subtly different application of the same physical principles underlying NMR imaging, but the clinical potential for this modality is currently still under evaluation. The most important application of clinical NMR spectroscopy is for the nonin-vasive monitoring of changes in metabolite levels and intracellular pH of intact tissues during physiological stress or in response to pharmacological agents or disease. The 31phosphorus (31P) nucleus has been the most commonly investigated in muscle disease (39) but the applications of proton (1H), (4,5,8) and 13carbon (13C), (2,7) are currently being explored.

Type
An International View of Magnetic Resonance—Imaging and Spectroscopy
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ackerman, J. J. H., Grove, T. H., Wong, G. G., Gadian, D. G., & Radda, G. K.Mapping of metabolites in whole animals by 31P NMR using surface coils. Nature, 1980, 283, 167–70.CrossRefGoogle ScholarPubMed
2.Alger, J. R., & Shulman, R. G.Metabolic applications of high resolution 13C nuclear magnetic resonance spectroscopy. British Medical Bulletin, 1984, 40, 160–64.Google Scholar
3.Arnold, D. L., Bore, P. J., Radda, G. K., Styles, P., & Taylor, D. J.Excessive intracellular acidosis of skeletal muscle on exercise in a patient with post-viral exhaustion/fatigue syndrome. The Lancet, 1984, 1, 1367–69.CrossRefGoogle Scholar
4.Arus, C., Barany, M., Westler, W. M., & Markley, J. L.1H NMR of intact tissues at 11. IT. Journal of Magnetic Resonance, 1984, 57, 519–25.Google Scholar
5.Arus, C., Barany, M., Westler, W. M., & Markley, J. L.1H NMR of intact muscle at 1 IT. FEBS Letter, 1984, 165, 231.CrossRefGoogle Scholar
6.Aue, W. P., Muller, S., Cross, T. A. & Seelig, J.Volume selective excitation: A novel approach to topical NMR. Journal of Magnetic Resonance, 1984, 56, 350–54.Google Scholar
7.Barany, M., Doyle, D. D., Graff, G., Westler, W. M., & Markley, J. L.Natural abundance 13C NMR spectra of human muscle, normal and diseased. Magnetic Resonance in Medicine, 1984, 1, 3043.Google Scholar
8.Behar, K. L., Hollander, J. A.den, Stromski, M. E., Ogino, T., Shulman, R. G., Petroff, O. A. C., & Pritchard, J. W.High-resolution 1H nuclear magnetic resonance study of cerebral hypoxia in vivo. Proceedings of the National Academy of Sciences, 1983, 80, 4945–48.CrossRefGoogle ScholarPubMed
9.Bendall, M. R., & Gordon, R. E.Depth and refocussing pulses designed for multipulse NMR with surface coils. Journal of Magnetic Resonance, 1983, 53, 365–85.Google Scholar
10.Bendall, M. R., & Aue, W. P.Experimental verification of depth pulses applied with surface coils. Journal of Magnetic Resonance, 1983, 54, 149–52.Google Scholar
11.Bendall, M. R., & Pegg, D. T.DEPT at depth: Polarization transfer and sample localization combined using surface coils. Journal of Magnetic Resonance, 1984, 57, 337–43.Google Scholar
12.Bottomley, P. A.Localized NMR spectroscopy by the sensitive point method. Journal of Magnetic Resonance, 1982, 50, 335–38.Google Scholar
13.Bottomley, P. A., Hart, H. R. Jr, Edelstein, W. A., Schenk, J. F., Smith, L. S., Leue, W. M., Mueller, O. M., & Redington, R. W.Anatomy and metabolism of the normal human brain studied by magnetic resonance at 1.5 Tesla. Radiology, 1984, 150, 441–46.Google Scholar
14.Cady, E. B., Dawson, M. J., Hope, P. L., Tofts, P. S., Costello, A. M. de L., Delpy, D. T., Reynolds, E. O. R., & Wilkie, D. R.Non-invasive investigation of cerebral metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy. The Lancet, 1983, 1, 1059–62.CrossRefGoogle ScholarPubMed
15.Cady, E. B., Delpy, D. T., & Tofts, P. S. Clinical 31P NMR spectroscopy. In Lerski, R. A., (ed.), Physical principles and clinical applications of NMR. Bristol: Adam Hilger, 1984.Google Scholar
16.Cady, E. B., Edwards, R. H. T., Griffiths, R. D., & Wilkie, D. R.31P nuclear magnetic resonance studies of leg muscle metabolites in Duchenne muscular dystrophy. Proc. Phys. Soc. 04, 1984, 57.Google Scholar
17.Cady, E. B., & Wilkie, D. R. Estimation of cerebral intracellular pH by 31P NMR spectroscopy. In Rolfe, P., (ed.), Fetal and neonatal physiological measurements. London: Butterworths, in press.Google Scholar
18.Chance, B., Eleff, S., Bank, W., Leigh, J. R. Jr, & Warnell, R.31P NMR studies of control of mitochondrial function in phosphofructokinase-deficient human skeletal muscle. Proceedings of the National Academy of Sciences, 1982, 79, 7714–18.CrossRefGoogle ScholarPubMed
19.Cresshull, I. D., Dawson, M. J., Edwards, R. H. T., Gadian, D. G., Gordon, R. E., Radda, G. K., Shaw, D., & Wilkie, D. R.Human muscle analyzed by 31P nuclear magnetic resonance in intact subjects. Journal of Physiology, 1981, 317, 18.Google Scholar
20.Dawson, M. J.Quantitative analysis of metabolite levels in normal human subjects by 31P topical magnetic resonance. Bioscience Reports, 1982, 2, 727–33.Google Scholar
21.Edwards, R. H. T. Energy metabolism in normal and dystrophic human muscle. In Rowland, L. P., (ed.), Pathogenesis of human muscular dystrophies. Amsterdam: Excerpta Medica, 1977, 416–28.Google Scholar
22.Edwards, R. H. T., Dawson, M. J., Wilkie, D. R., Gordon, R. E., & Shaw, D.Clinical use of nuclear magnetic resonance in the investigation of myopathy. The Lancet, 1982, 1, 725–31.CrossRefGoogle ScholarPubMed
23.Evelhoch, J. L., Crowley, M. G., & Ackerman, J. J. H.Signal-to-noise optimization and observed volume localization with circular surface coils. Journal of Magnetic Resonance, 1984, 56, 110–24.Google Scholar
24.Gadian, D. G., Radda, G. K., Ross, B., Hockaday, J., Bore, P., Taylor, D. J., & Styles, P.Examination of a myopathy by phosphorus nuclear magnetic resonance. The Lancet, 1981, 2, 774–75.CrossRefGoogle ScholarPubMed
25.Gordon, R. E., Hanley, P. E., Shaw, D., Gadian, D. G., Radda, G. K., Styles, P., Bore, P. J., & Chan, L.Localization of metabolites in animals using 31P topical magnetic resonance. Nature, 1980, 287, 736–38.Google Scholar
26.Gordon, R. E., Hanley, P. E., & Shaw, D.Topical magnetic resonance. Progress in NMR Spectroscopy, 1982, 15, 147.Google Scholar
27.Griffiths, J. R., Cady, E. B., Edwards, R. H. T., McCready, V. R., Wilkie, D. R., & Wiltshaw, E.31P NMR studies of a human tumor in situ. The Lancet, 1983, 1, 1435–36.Google Scholar
28.Griffiths, R. D., Cady, E. B., Edwards, R. H. T., & Wilkie, D. R.Muscle energy metabolism in Duchenne dystrophy studied by 31P NMR: Controlled trials show no effect of allopurinol or ribose. Muscle and Nerve. Submitted for publication.Google Scholar
29.Griffiths, R. D., Cady, E. B., Edwards, R. H. T., & Wilkie, D. R.31phosphorus nuclear magnetic resonance used in a double blind trial of allopurinol in Duchenne muscular dystrophy. Clinical Science, 1984, 66, 16.CrossRefGoogle Scholar
30.Griffiths, R. D., Edwards, R. H. T., & Cady, E. B.31-P NMR studies of human myopathy. Proceedings of INCONSIM (30th May, 1984) Lisbon, Portugal. Portuguese Society of Radiology and Nuclear Medicine.Google Scholar
31.Haase, A., Hanicke, W., & Frahm, J.The influence of experimental parameters in surface coil NMR. Journal of Magnetic Resonance, 1984, 56, 401–12.Google Scholar
32.Hope, P. L., Costello, A. M. de L., Cady, E. B., Delpy, D. T., Tofts, P. S., Chu, A., Hamilton, P. A., Reynolds, E. O. R., & Wilkie, D. R.Cerebral energy metabolism studied wth phosphorus NMR spectroscopy in normal and birth-asphyxiated infants. The Lancet, 1984, 2, 366–70.Google Scholar
33.Hore, P. J.Solvent suppression in Fourier transform nuclear magnetic resonance. Journal of Magnetic Resonance, 1983, 55, 283300.Google Scholar
34.Iles, R. A., Stevens, A. N., & Griffiths, J. R.NMR studies of metabolites in living tissue. Progress in NMR Spectroscopy, 1982, 15, 49200.Google Scholar
35.Mills, K. R., & Edwards, R. H. T.Investigative strategies for muscle pain. Journal of Neurological Sciences, 1983, 58, 7388.CrossRefGoogle ScholarPubMed
36.Moon, R. M., & Richards, J. H.pH by 31P magnetic resonance. Journal of Biological Chemistry, 1973, 248, 7276–78.CrossRefGoogle ScholarPubMed
37.Newman, R. J., Bore, P. J., Chan, L., Gadian, D. G., Styles, P., Taylor, D. J., & Radda, G. K.Nuclear magnetic resonance studies of forearm muscle in Duchenne dystrophy. British Medical Journal, 1982, 284, 1072–74.CrossRefGoogle ScholarPubMed
38.Radda, G. K., & Steiner, R. E., eds. Nuclear magnetic resonance and its clinical applications. British Medical Bulletin, 1984, 40.Google Scholar
39.Radda, G. K., Bore, P. J., & Rajagopalan, B.Clinical aspects of 31P NMR spectroscopy. British Medical Bulletin, 1984, 40, 155–59.Google Scholar
40.Redfield, A. G., Kunz, S. D., & Ralph, E. K.Dynamic range in Fourier transform proton magnetic resonance. Journal of Magnetic Resonance, 1975, 19, 114–17.Google Scholar
41.Ross, B. D., Radda, G. K., Gadian, D. G., Rocker, G., Esiri, M., & Falconer-Smith, J.Examination of a case of suspected McArdle's syndrome by 31P NMR. New England Journal of Medicine, 1981, 304, 1338–42.CrossRefGoogle Scholar
42.Saunders, R. D., & Smith, H.Safety aspects of NMR clinical imaging. British Medical Bulletin, 1984, 40, 148–54.Google Scholar
43.Scott, K. N., Brooker, H. R., Fitzsimmons, J. R., Bennett, H. F., & Micks, R. C.Spatial localization of 31P nuclear magnetic resonance signal by the sensitive point method. Journal of Magnetic Resonance, 1982, 50, 339–44.Google Scholar
44.Slichter, C. P.Principles of magnetic resonance. 2nd Edition. Springer Verlag, 1978.Google Scholar
45.Taylor, D. J., Crowe, M., Bore, P. J., Styles, P., Arnold, D. L., & Radda, G. K.Examination of the energetics of aging skeletal muscle using nuclear magnetic resonance. Gerontology, 1984, 30, 27.Google Scholar
46.Taylor, D. J., Bore, P. J., Styles, P., Gadian, D. G., & Radda, G. K.Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study. Mol. Biol. Med. 1983, 1, 7794.Google ScholarPubMed
47.Wilkie, D. R., Dawson, M. J., Edwards, R. H. T., Gadian, D. G., & Shaw, D.31P NMR studies of resting muscle in normal human subjects. In Pollack, G. H. & Sugi, H. (eds.), Contractile mechanisms in muscle. Vol. 2: Mechanics, energetics and molecular models. New York: Plenum Press, 1984, 333–47.Google Scholar
48.Younkin, D. P., Delivoria-Papadopoulos, M., Leonard, J. C., Subramanian, V. H., Eleff, S., Leigh, J. S. Jr, & Chance, B.Unique aspects of human cerebral metabolism evaluated with 31-P NMR spectroscopy. Annals of Neurology, in press.Google Scholar