This paper proposes fractal-inspired array antennae for wideband applications. The proposed antennae have a resonance frequency range of 20–40 GHz. The modified fractal antennae are fabricated with a height of 1.6 mm, substrate width, and length of 100, 50, 25, and 18.75 mm2, and a simulated result shows that the gain is increased to 11.04, 11.9, 8.4, and 6 dBi, and the designed antennae radiate power with directivity of 11.3, 13.4, 9.29, and 7.17 dBi concerning proposed designs A, B, C, and D, respectively. The proposed antennae with 5G New Radio (NR) bands have more radiation concerning resonate frequencies in the 20–40 GHz range with Φ = 0°, Φ = 90°, and θ = 90°. Moreover, the bandwidths for applications covered in the 5G NR and sub-6G are 1.92, 0.73, 0.7, 2.4, 1.3, 5.3, and 1.26 GHz, and 3.4, 3.7, 2.67, and 4.65 GHz, and 2, 3.5, and 1.57 GHz, and 2.5, 1.5, and 1.0 GHz with the maximum return loss of 37 dB, 32.8 dB, 31.2 dB, and 23 dB with corresponding resonate frequencies as 21.5, 27.6, 33, and 27.6 GHz concerning designs A, B, C, and D, respectively. The proposed antennae have been implemented and validated using Computer Simulation Technology (CST), Vector Network Analyzer (VNA), spectrum analyzer, and power sensor.