Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T03:42:03.525Z Has data issue: false hasContentIssue false

Wideband, high-efficiency, high-power GaN amplifiers, using MIC and quasi-MMIC technologies, in the 1–4 GHz range

Published online by Cambridge University Press:  09 June 2014

Chamssedine Berrached
Affiliation:
UMS, Parc Silic de Villebon-Courtaboeuf, 10 Avenue du Québec, 91140 Villebon-sur-Yvette, France. Phone: +335 554 577 53 XLIM – UMR 7252, Université de Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges, France
Diane Bouw
Affiliation:
UMS, Parc Silic de Villebon-Courtaboeuf, 10 Avenue du Québec, 91140 Villebon-sur-Yvette, France. Phone: +335 554 577 53
Marc Camiade
Affiliation:
UMS, Parc Silic de Villebon-Courtaboeuf, 10 Avenue du Québec, 91140 Villebon-sur-Yvette, France. Phone: +335 554 577 53
Kassem El-Akhdar
Affiliation:
XLIM – UMR 7252, Université de Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges, France
Denis Barataud*
Affiliation:
XLIM – UMR 7252, Université de Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges, France
Guillaume Neveux
Affiliation:
XLIM – UMR 7252, Université de Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges, France
*
Corresponding author: D. Barataud Email: [email protected]

Abstract

In this paper, the designs and experimental performances of wideband (higher than one octave) high-efficiency, high-power amplifiers (HPA) working in the 1–4 GHz range, using the same GaN process, are presented. They are based on the Bode–Fano integrals, which can be applied to a trade-off calculation between bandwidth and efficiency. Firstly, an microwave intregrated circuits (MIC) wideband HPA, externally matched, is presented. It generates a continuous wave (CW) output power (Pout) greater than 40 W, a power gain (GP) higher than 9.2 dB and a corresponding power added efficiency (PAE) (drain efficiency (DE)) ranged between 36 and 44% (40 and 48%) over the 1–3 GHz bandwidth. Two other amplifiers have been designed upon the same theoretical methodology, with a passive GaAs MMIC circuit technology, enabling to reduce the final size down to 420 mm2. The first internally matched Quasi monolithic microwave intergrated circuits (Quasi-MMIC) single-ended HPA generates a pulsed Pout greater than 25 W, GP higher than 9.8 dB, and a corresponding PAE (DE) ranged between 37 and 52.5% (40 and 55%) over the 2–4 GHz bandwidth. The second internally matched Quasi-MMIC HPA, based on balanced architecture, generates a pulsed Pout higher than 45 W, GP higher than 9.5 dB and PAE (DE) ranged between 33 and 44% (38 and 50%) over the 2–4 GHz bandwidth. These results are among the best ones published in terms of PAE and Pout in instantaneous octave bandwidth in the 1–4 GHz frequency range.

Type
Research Papers
Copyright
Copyright © Published by Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Cripps, S.C.: RF Power Amplifiers for Wireless Communication, 2nd ed., Artech House Microwave Library, 2006.Google Scholar
[2]Cripps, S.C.; Tasker, J.P.; Clarke, A.L.; Lees, J.; Benedikt, J.: On the continuity of high efficiency modes in linear RF power amplifiers. IEEE Microw. Wirel. Compon. Lett., 19 (10) (2009), 665667.CrossRefGoogle Scholar
[3]Campovecchio, M.; Obregon, J.; Lajugie, M.; Le Bras, B.: Optimum design of distributed power-FET amplifiers. Application to a 2–18 GHz MMIC module exhibiting improved power performances, in Microwave and Millimeter-Wave Monolithic Circuits Symp., Digest of Papers, 1994.Google Scholar
[4]Floriot, D. et al. : New qualified industrial AlGaN/GaN HEMT process: power performances and reliability figures of merit, in European Microwave Conf., EuMC2012, Amsterdam, 2013.Google Scholar
[5]Bode, H. W.: Network Analysis and Feedback Amplifier Design, Van Nostrand, New York, 1945.Google Scholar
[6]Fano, R. M.: Theoretical limitations on the broadband matching of arbitrary impedances. J. Franklin Inst., 249 (1950), 5783 and 139–155.Google Scholar
[7]Saad, P.; Fager, C.; Cao, H.; Zirath, H.; Andersson, K.: Design of a highly efficient 2–4 GHz octave bandwidth GaN-HEMT power amplifier. IEEE Trans. Microw. Theory Tech., 58 (7) (2010), 16771685. doi: 10.1109/TMTT.2010.2049770.Google Scholar
[8]Camiade, M. et al. : Highly integrated S and C-band internally-matched quasi-MMIC power GaN devices, in European Microwave Conf., EuMC2012, Amsterdam, 2012.Google Scholar
[9]Arnous, T.; Bathich, K.; Preis, S.; Boeck, G.: 200W octave bandwidth GaN power amplifier, in European Microwave Conf., EuMC2012, Amsterdam, 2012.Google Scholar
[10]Ahmed, S.; Neveux, G.; Reveyrand, T.; Barataud, D.; Nebus, J. M.: Time-domain interleaved high sampling rate system for large signal characterization of non-linear devices, in 79th ARFTG Microwave Measurement Conf., Montreal QC, 2012, 1–4. doi: 10.1109/ARFTG79.2012.6291189.Google Scholar
[11]El-Akhdar, K.; Ahmed, S.; Neveux, G.; Reveyrand, T.; Barataud, D.; Nebus, J. M.: High resolution wideband calibration procedure for RF time-domain measurement of non-linear devices, in 81st ARFTG Microwave Measurement Conf., Seattle, 2013, 1–4.CrossRefGoogle Scholar
[12]Bacque, L. et al. : Implementation of dynamic bias and digital predistortion to enhance efficiency and linearity in a 100 W RF amplifier with OFDM signal. Int. J. Microw. Wirel. Tech., 1 (04), (2009), 261268. doi: 10.1017/S1759078709990195.Google Scholar
[14]Krishnamurthy, K.; Green, D.; Vetury, R.; Poulton, M.; Martin, J.: 0.5–2.5 GHz, 10 W MMIC power amplifier in GaN HEMT technology, in Annual IEEE Compound Semiconductor Integrated Circuit Symp., 2009, 1–4. doi: 10.1109/csics.2009.5315739.CrossRefGoogle Scholar
[15]Runton, C.; Driver, T.; Krishnamurthy, K.; LeFevre, M.; Shallal, K.: Multi-octave practical power amplifier realization using GaN on SiC. Broadband PAs for Wireless Communications workshop, IMS2012. 2012.Google Scholar
[16]Smith, R.M.; Cripps, S.C.; Tasker, J. P.; Lees, J.; Benedikt, J.: A 40W push-pull power amplifier for high efficiency, decade bandwidth applications at microwave frequencies, in Microwave Symp. Digest (MTT), 2012, 1–3. doi: 10.1109/MWSYM.2012.6259418.CrossRefGoogle Scholar
[17]Sledzik, H. et al. : GaN based power amplifiers for broadband applications from 2 GHz to 6 GHz, in Circuit Conf. EuMIC, 2010.CrossRefGoogle Scholar
[18]Giofrè, R. et al. : 1–7 GHz single-ended power amplifier based on GaN HEMT grown on Si-substrate, in Integrated Circuit Conf. EuMIC, 2012.Google Scholar
[19]Ding, X.; He, S.; You, F.; Xie, S.; Hu, Z.: 2–4 GHz wideband power amplifier with ultra-flat gain and high PAE. Electron. Lett. 49(5) (2013), 326327.Google Scholar